【題目】如圖,AB 為圓O的直徑, PQ切圓O于T , AC⊥PQ于C ,交圓O于 D .
(1)求證: AT 平分∠BAC ;
(2)若 AD =2 , TC= ,求圓O的半徑.
【答案】(1)證明見解析;(2)2.
【解析】
試題分析:(1)PQ切⊙O于T,則OT⊥PC,根據(jù)AC⊥PQ,則AC∥OT,要證明AT平分∠BAC,只要證明∠TAC=∠ATO就可以了.
(2)過點(diǎn)O作OM⊥AC于M,則滿足垂徑定理,在直角△AOM中根據(jù)勾股定理就可以求出半徑OA.
試題解析:(1)連接OT;
∵PQ切⊙O于T,
∴OT⊥PQ,
又∵AC⊥PQ,
∴OT∥AC,
∴∠TAC=∠ATO;
又∵OT=OA,
∴∠ATO=∠OAT,
∴∠OAT=∠TAC,
即AT平分∠BAC.
(2)過點(diǎn)O作OM⊥AC于M,
∴AM=MD==1;
又∠OTC=∠ACT=∠OMC=90°,
∴四邊形OTCM為矩形,
∴OM=TC=,
∴在Rt△AOM中,
AO===2;
即⊙O的半徑為2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書籍是人類進(jìn)步的階梯,聯(lián)合國教科文組織把每年的4月23日確定為“世界讀書日”,某校為了了解該校學(xué)生一個(gè)學(xué)期閱讀課外書籍的情況,在全校范圍內(nèi)隨機(jī)對100名學(xué)生進(jìn)行了問卷調(diào)查,根據(jù)調(diào)查的結(jié)果,繪制了統(tǒng)計(jì)圖表的一部分:一個(gè)學(xué)期平均一天閱讀課外書籍所有時(shí)間統(tǒng)計(jì)表
時(shí)間(分鐘) | 20 | 40 | 60 | 80 | 100 | 120 |
人數(shù) | 43 | 31 | 15 | 5 | 4 | 2 |
請你根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖1、圖2;
(2)這100名學(xué)生一個(gè)學(xué)期平均每人閱讀課外書籍多少本?若該校共有1200名學(xué)生,請你估計(jì)這個(gè)學(xué)校學(xué)生一個(gè)學(xué)期閱讀課外書籍共多少本?
(3)根據(jù)統(tǒng)計(jì)表,求一個(gè)學(xué)期平均一天閱讀課外書籍所用時(shí)間的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)600個(gè)旅游紀(jì)念品,進(jìn)價(jià)為每個(gè)6元,第一周以每個(gè)10元的價(jià)格售出200個(gè),第二周若按每個(gè)10元的價(jià)格銷售仍可售出200個(gè),但商店為了適當(dāng)增加銷量,決定降價(jià)銷售(根據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出50個(gè),但售價(jià)不得低于進(jìn)價(jià)),單價(jià)降低x元銷售銷售一周后,商店對剩余旅游紀(jì)念品清倉處理,以每個(gè)4元的價(jià)格全部售出,如果這批旅游紀(jì)念品共獲利1250元,問第二周每個(gè)旅游紀(jì)念品的銷售價(jià)格為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種文具,進(jìn)價(jià)為5元/件.售價(jià)為6元/件時(shí),當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價(jià)每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價(jià)統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當(dāng)天銷售利潤不低于240元,求當(dāng)天銷售單價(jià)所在的范圍;
(3)若每件文具的利潤不超過,要想當(dāng)天獲得利潤最大,每件文具售價(jià)為多少元?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的兩直角邊,分別在軸的負(fù)半軸和軸的正半軸上,為坐標(biāo)原點(diǎn),,兩點(diǎn)的坐標(biāo)分別為、,拋物線經(jīng)過點(diǎn),且頂點(diǎn)在直線上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若是由沿軸向右平移得到的,當(dāng)四邊形是菱形時(shí),試判斷點(diǎn)和點(diǎn)是否在該拋物線上,并說明理由;
(3)在(2)的條件下,若點(diǎn)是所在直線下方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作平行于軸交于.設(shè)點(diǎn)的橫坐標(biāo)為,的長度為.求與之間的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求取最大值時(shí),點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:若點(diǎn)在某一個(gè)函數(shù)的圖象上,且點(diǎn)的橫縱坐標(biāo)相等,我們稱點(diǎn)為這個(gè)函數(shù)的“好點(diǎn)”.若關(guān)于的二次函數(shù)對于任意的常數(shù)恒有兩個(gè)“好點(diǎn)”,則的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左邊),交軸正半軸于點(diǎn).
(1)如圖1,當(dāng)時(shí).
①直接寫出點(diǎn),,的坐標(biāo);
②若拋物線上有一點(diǎn),使,求點(diǎn)的坐標(biāo).
(2)如圖2,平移直線交拋物線于,兩點(diǎn),直線與直線交于點(diǎn),若點(diǎn)在定直線上運(yùn)動(dòng),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,切于點(diǎn),連結(jié)交于點(diǎn),是上一點(diǎn),且與點(diǎn)在異側(cè),連結(jié)
(1)求證:;
(2)若,,則的長為(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,一次函數(shù)(為常數(shù),)的圖像與軸、軸分別相交于點(diǎn),半徑為4的⊙與軸正半軸相交于點(diǎn),與軸相交于點(diǎn),點(diǎn)在點(diǎn)上方.
(1)若直線與弧有兩個(gè)交點(diǎn).
①求的度數(shù);
②用含的代數(shù)式表示,并直接寫出的取值范圍;
(2)設(shè),在線段上是否存在點(diǎn),使?若存在,請求出點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com