【題目】ABCDEC中,AC=BCDC=EC,ACB=ECD=90°.

(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5

求證:AFBD,

AF的長(zhǎng)度;

(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí)求證:AFBD;

(3)如圖3,在(2)的條件下,連接CF并延長(zhǎng)CFAD于點(diǎn)G,AFG是一個(gè)固定的值嗎?若是,求出AFG的度數(shù),若不是,請(qǐng)說(shuō)明理由

【答案】(1)AF=(2)見解析(3)AFG=45°

【解析】

試題分析:(1)根據(jù)SAS可證ACEBCD,再根據(jù)全等三角形的性質(zhì)可得1=2,再結(jié)合對(duì)頂角相等證得結(jié)論;

根據(jù)同一個(gè)三角形的面積不變可求的AF得值;

(2)如的方法,根據(jù)SAS證得ACEBCD,再根據(jù)全等三角形的性質(zhì)和垂直的定義可證;

(3)如圖4,過(guò)點(diǎn)C作CMBD,CNAE,垂足分別為M、N,然后由上面的結(jié)論ACEBCD,可根據(jù)全等三角形的面積相等證得CM=CN,再根據(jù)角平分線的判定得證CF平分BFE,最后根據(jù)角平分線的性質(zhì)得證.

試題解析:(1)證明:如圖1,AC=BC,ACB=ECD=90°,EC=DC,∴△ACEBCD,

1=2,3=4,BFE=ACE=90°,AFBD.

ECD=90°,BC= AC=12,DC= EC=5,BD=13,

SABD=AD·BC=BD·AF,AF=

(法2:ECD=90°,BC= AC=12,DC= EC=5,AE=BD=13,BE=7,設(shè)EF=x,

BFE=90°,BF2=BE2-EF2,BF2=AB2-AF2,72-x2=288-(13+x)2,

x=,AF=13+=

(2)證明:如圖4,ACB=ECDACB+ACD=ECD+ACD,BCD=ACE,

AC=BC,ACE=BCDEC=DC,∴△ACEBCD,1=2,

3=4,BFA=BCA=90°AFBD.

(3)AFG=45°

如圖4,過(guò)點(diǎn)C作CMBD,CNAE,垂足分別為M、N,

∵△ACEBCD,SACE=SBCD,AE=BD,SACE=AE·CN,

SBCD=BD·CM,CM=CN,

CMBD,CNAE,CF平分BFE,

AFBD,BFE=90°EFC=45°,AFG=45°

(法2:過(guò)點(diǎn)C作CMBD,CNAE,垂足分別為M、N,CMBD,CNAE,

BMC=ANC=90°,∵△ACEBCD,1=2,BMC=ANC=90°,1=2,

AC=BC∴△BCMACN,CM=CN,CMBD,CNAE,CF平分BFE,

AFBD,BFE=90°,EFC=45°,AFG=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)用交換律和結(jié)合律計(jì)算:

(1)3-10+7=3________7______10=________;

(2)-6+12-3-5=______6______3______5______12=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD在數(shù)軸上的位置如圖所示,點(diǎn)D、A對(duì)應(yīng)的數(shù)分別為0和1,若正方形ABCD繞著頂點(diǎn)順時(shí)針?lè)较蛟跀?shù)軸上連續(xù)翻轉(zhuǎn),翻轉(zhuǎn)1次后,點(diǎn)B所對(duì)應(yīng)的數(shù)為2;則翻轉(zhuǎn)2016次后,數(shù)軸上數(shù)2016所對(duì)應(yīng)的點(diǎn)是(  )

A. 點(diǎn)C B. 點(diǎn)D C. 點(diǎn)A D. 點(diǎn)B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),

且∠ABM=∠BAM,連接BM,MN,BN.

(1)求證:BM=MN;

(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車的騎車時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如圖統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

(1)這次被調(diào)查的總?cè)藬?shù)是多少?

(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.

(3)如果騎自行車的平均速度為12km/h,請(qǐng)估算,在租用公共自行車的市民中,騎車路程不超過(guò)6km的人數(shù)所占的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列等式:x2倍與10的和等于18.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2)的值是( )

A. 2 B. 2 C. ±2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本學(xué)期初,我市教育部門對(duì)某中學(xué)從學(xué)生的品德、身心、學(xué)習(xí)、創(chuàng)新、國(guó)際、審美、信息、生活八個(gè)方面進(jìn)行了綜合評(píng)價(jià),評(píng)價(jià)小組從八年級(jí)學(xué)生中選取部分學(xué)生針對(duì)“信息素養(yǎng)”進(jìn)行測(cè)試,并將測(cè)試結(jié)果繪制成如下統(tǒng)計(jì)圖(如圖).根據(jù)圖中信息,解答下列問(wèn)題:

(1)本次選取參加測(cè)試的學(xué)生人數(shù)是 ___

(2)學(xué)生“信息素養(yǎng)”得分的中位數(shù)落在 _____;

3)若把每組中各個(gè)分?jǐn)?shù)用這組數(shù)據(jù)的中間值代替(如30﹣40分的中間值為35分),則參加測(cè)試的學(xué)

生的平均分為多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種蔬菜按品質(zhì)分成三個(gè)等級(jí)銷售,銷售情況如下表:

等級(jí)

單價(jià)(元/千克)

銷售量(千克)

一等

5.0

20

二等

4.5

40

三等

4.0

40

則售出蔬菜的平均單價(jià)為________/千克.

查看答案和解析>>

同步練習(xí)冊(cè)答案