【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動,他從A處出發(fā)去看望B、C、D處的其他甲蟲,規(guī)定:向上向右走均為正,向下向左走均為負,如果從A到B記為A→B{1,4},從B到A記為:B→A{﹣1,﹣4},其中第一個數(shù)表示左右方向,第二個數(shù)表示上下方向.
(1)圖中A→C{ , },C→B{ , }.
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程.
(3)若圖中另有兩個格點M、N,且M→A{2﹣a,b﹣3},M→N{3﹣a,b﹣2},則N→A應記為什么?直接寫出你的答案.
【答案】(1)A→C{3,4},C→B{﹣2,0};(2)10;(3)N→A應記為(﹣1,﹣1)
【解析】
(1)根據(jù)向上向右走均為正,向下向左走均為負,分別寫出各點的坐標即可;
(2)分別根據(jù)各點的坐標計算總長即可;
(3)將M→A,M→N對應的橫縱坐標相減即可得出答案.
(1)圖中A→C{ 3,4},C→B{﹣2,0}
故答案為:3,4;﹣2,0.
(2)由已知可得:A→B表示為:(1,4),B→C記為(2,0),C→D記為(1,﹣2),
則該甲蟲走過的路程為:1+4+2+1+2=10
(3)由M→A{2﹣a,b﹣3},M→N{3﹣a,b﹣2},
可知:3﹣a﹣(2﹣a)=1,b﹣2﹣(b﹣3)=1
∴點A向右走1個格點,向上走1個格點到點N
∴N→A應記為(﹣1,﹣1).
科目:初中數(shù)學 來源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點M、N分別在邊AB、CD上,直線MN交矩形對角線 AC于點E,將△AME沿直線MN翻折,點A落在點P處,且點P在射線CB上.
(1)如圖1,當EP⊥BC時,求CN的長;
(2) 如圖2,當EP⊥AC時,求AM的長;
(3) 請寫出線段CP的長的取值范圍,及當CP的長最大時MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)的圖象與函數(shù)(x>0)的圖象交于A(m,1),B(1,n)兩點.
(1)求k,m,n的值;
(2)利用圖象寫出當x≥1時,和的大小關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面內,直線y=﹣x﹣4與x軸、y軸分別交于點A、B,點C在x軸正半軸上,且滿足OC=OB.
(1)求線段AB的長及點C的坐標;
(2)設線段BC的中點為E,如果梯形AECD的頂點D在y軸上,CE是底邊,求點D的坐標和梯形AECD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.
請結合以上信息解答下列問題:
(1)m= ;
(2)請補全上面的條形統(tǒng)計圖;
(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學生,請你估計該校約有 名學生最喜愛足球活動.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在矩形ABCD中,∠ADC的平分線DE與BC邊所在的直線交于點E,點P是線段DE上一定點(其中EP<PD)
(1)如圖1,若點F在CD邊上(不與D重合),將∠DPF繞點P逆時針旋轉90°后,角的兩邊PD、PF分別交射線DA于點H、G.
①求證:PG=PF;
②探究:DF、DG、DP之間有怎樣的數(shù)量關系,并證明你的結論.
(2)拓展:如圖2,若點F在CD的延長線上(不與D重合),過點P作PG⊥PF,交射線DA于點G,你認為(1)中DE、DG、DP之間的數(shù)量關系是否仍然成立?若成立,給出證明;若不成立,請寫出它們所滿足的數(shù)量關系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A水果超市最近新進了一批百香果,每斤進價10元,為了合理定價,在第一周試行機動價格,賣出時每斤以15元為標準,超出15元的部分記為正,不足15元的部分記為負,超市記錄第一周百香果的售價情況和售出情況:
(1)第一周星期三超市售出的百香果單價為_______元,這天的利潤是_____元.
(2)第一周超市出售此種百香果的收益如何?(盈利或虧損的錢數(shù))
(3)超市為了促銷這種百香果,決定從下周一起推出兩種促銷方式:
方式一:購買不超過5斤百香果,每斤20元,超出5斤的部分,每斤降價4元;
方式二:每斤售價17元.
林老師決定下周在A水果超市購買40斤百香果,通過計算說明應選擇上述兩種促銷方式中的哪種方式購買更省錢.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點A的坐標(2,),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉一定角度后得△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為( )
A. (,) B. (,) C. (,) D. (,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點D,E分別在邊AC,AB上,BD與CE交于點O,給出下列三個條件:①∠EBO=∠DCO;②;③.
(1)上述三個條件中,由哪兩個條件可以判定是等腰三角形?(用序號寫出所有成立的情形)
(2)請選擇(1)中的一種情形,說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com