在△ABC中,若AB=AC,∠B=70°,則∠A=    度.
【答案】分析:由AB=AC,∠B=70°可得∠A是三角形的頂角,根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理即可求解.
解答:解:∵AB=AC
∴∠B=∠C=70°
∵∠A+∠B+∠C=180°
∴∠A=180°-∠B-∠C=40°.
故填40.
點評:本題考查等腰三角形的性質(zhì)及三角形的內(nèi)角和定理;等腰三角形的兩個底角相等,三角形內(nèi)角和為180°.由已知判斷出∠A是三角形的頂角是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在△ABC中,若AB=30,AC=26,BC上的高為24,則此三角形的周長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,在△ABC中,若AB=10,AC=16,AC邊上的中線BD=6,則BC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D是BC中點,連接AD并延長到點E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AC∥BE
AC∥BE
;
(2)證明上題;
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請看解題過程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請參考上述解題方法,求AD>
1
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,若AB=AC,中線AD=
3
,cosB=
3
2
,則△ABC的周長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,點D是BC中點,連接AD并延長到點E,連接BE.
(1)若要使△ACD≌△EBD,應(yīng)添上條件:
AD=DE
AD=DE
;
(2)證明:
(3)在△ABC中,若AB=5,AC=3,可以求得BC邊上的中線AD的取值范圍是AD<4.請看解題過程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,則AD<4.請參考上述解題方法,求出AD>
1
1
.所以AD的取值范圍是
1<AD<4
1<AD<4

查看答案和解析>>

同步練習冊答案