(2011•?悼h模擬)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,動點P、Q同時從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止,兩點運動時的速度都是1cm/s,而當點P到達點A時,點Q正好到達點C.設P點運動的時間為t(s),△BPQ的面積為y(cm2).下圖中能正確表示整個運動中y關于t的函數(shù)關系的大致圖象是( )

A.
B.
C.
D.
【答案】分析:注意分析y隨x的變化而變化的趨勢,而不一定要通過求解析式來解決.
解答:解:做AE⊥BC于E,根據(jù)已知可得,AB=BC,∴AB2=62+(AB-2)2,解之得,AB=BC=10cm.
由圖可知:P點由B到A,△BPQ的面積從小到大,且達到最大此時面積=×10×6=30cm2
當P點在AD上時,因為同底同高,所以面積保持不變;
當P點從D到C時,面積又逐漸減;又因為AB=10cm,AD=2cm,CD=6cm,速度為1cm/s,
則在這三條線段上所用的時間分別為10s、2s、6s.
故選B.
點評:要能根據(jù)函數(shù)圖象的性質和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結合實際意義得到正確的結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•保康縣模擬)馬橋鎮(zhèn)組織20輛汽車裝運A、B、C三種品位共400噸磷礦石到周灣、橫溪、城區(qū)三個工業(yè)園銷售,按計劃,20輛汽車都要裝運,每輛汽車只能裝運同一品位磷礦石,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:
磷礦石品位 A B C
每輛汽車運載量(噸) 24 20 16
每噸磷礦石獲得利潤(十元) 6 8 5
(1)設裝運A種磷礦石的車輛為x,裝運B種磷礦石的車輛數(shù)y輛,求y與x之間的函數(shù)關系式;
(2)如果裝運 每輛磷礦石的車輛數(shù)都不少于4輛,那么車輛的按排方案有幾種?并寫出每種安排方案;
(3)若要使此次銷售獲利最大,應采用哪種安排方案?并求出最大利潤值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省外國語實驗學校中考數(shù)學模擬卷(5月份)(解析版) 題型:選擇題

(2011•?悼h模擬)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,動點P、Q同時從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止,兩點運動時的速度都是1cm/s,而當點P到達點A時,點Q正好到達點C.設P點運動的時間為t(s),△BPQ的面積為y(cm2).下圖中能正確表示整個運動中y關于t的函數(shù)關系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市中考數(shù)學二模試卷(解析版) 題型:選擇題

(2011•?悼h模擬)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,動點P、Q同時從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止,兩點運動時的速度都是1cm/s,而當點P到達點A時,點Q正好到達點C.設P點運動的時間為t(s),△BPQ的面積為y(cm2).下圖中能正確表示整個運動中y關于t的函數(shù)關系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市朝陽區(qū)中考數(shù)學一模試卷(解析版) 題型:選擇題

(2011•?悼h模擬)如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,CD=6cm,AD=2cm,動點P、Q同時從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止,兩點運動時的速度都是1cm/s,而當點P到達點A時,點Q正好到達點C.設P點運動的時間為t(s),△BPQ的面積為y(cm2).下圖中能正確表示整個運動中y關于t的函數(shù)關系的大致圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案