如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,將△EAC逆時(shí)針旋轉(zhuǎn)后能與△BAD重合.
(1)旋轉(zhuǎn)中心是______點(diǎn);
(2)旋轉(zhuǎn)了______度;
(3)若EC=10cm,求BD的長(zhǎng)?

解:(1)∵△EAC逆時(shí)針旋轉(zhuǎn)后能與△BAD重合,
∴A點(diǎn)即為兩三角形的公共頂點(diǎn),故旋轉(zhuǎn)中心是A點(diǎn);

(2)∵△EAC逆時(shí)針旋轉(zhuǎn)后能與△BAD,
∴AE與AB重合,
∵∠BAE=90°,
∴旋轉(zhuǎn)的度數(shù)為:90;

(3)由題意知EC和BD是對(duì)應(yīng)線段,據(jù)旋轉(zhuǎn)的性質(zhì)可得BD=EC=10cm
分析:(1)找出兩重合三角形的公共頂點(diǎn)即可得出其旋轉(zhuǎn)中心;
(2)根據(jù)兩重合邊所夾的角度即可求出旋轉(zhuǎn)的度數(shù);
(3)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)可直接進(jìn)行解答.
點(diǎn)評(píng):本題考查的是圖形旋轉(zhuǎn)的性質(zhì),即①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等. ②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角. ③旋轉(zhuǎn)前、后的圖形全等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ACD和△AEB都是等腰直角三角形,∠EAB=∠CAD=90°,下列五個(gè)結(jié)論:①EC=BD;②EC⊥BD;③S四邊形EBCD=
12
EC•BD;④S△ADE=S△ABC;⑤△EBF∽△DCF.其中正確的有
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于點(diǎn)F,BD分別交CE、AE于點(diǎn)G、H.試猜測(cè)線段AE和BD的數(shù)量和位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的有(  )
①△ACE以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針?lè)较蛐D(zhuǎn)90°后與△ADB重合,
②△ACB以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針?lè)较蛐D(zhuǎn)270°后與△DAC重合,
③沿AE所在直線折疊后,△ACE與△ADE重合,
④沿AD所在直線折疊后,△ADB與△ADE重合,
⑤△ACE的面積等于△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,四邊形ABCD是平行四邊形,下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

31、如圖,△ACD和△ABE都是直角等腰三角形,∠DAC和∠EAB是直角,連接CE.
(1)在圖上畫(huà)出△ACE以點(diǎn)A為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°后得到的△AC'E'(只需作出圖形;不寫畫(huà)法);
(2)猜想EC與C'E'的位置有什么關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案