點(diǎn)C是線段AB上的一個(gè)黃金分割點(diǎn),且AC>BC,若AB=5cm,則AC=________,BC=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)B(2,0)和點(diǎn)C(0,8),且它的對(duì)稱軸是直精英家教網(wǎng)線x=-2.
(1)求拋物線與x軸的另一交點(diǎn)A的坐標(biāo);
(2)求此拋物線的解析式;
(3)連接AC,BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A,點(diǎn)B)不重合,過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(4)在(3)的基礎(chǔ)上試說(shuō)明S是否存在最大值?若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東城區(qū)一模)在平面直角坐標(biāo)系xOy中,拋物線y=x2-2mx+m2-9與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè),且OA<OB),與y軸的交點(diǎn)坐標(biāo)為(0,-5).點(diǎn)M是線段AB上的任意一點(diǎn),過(guò)點(diǎn)M(a,0)作直線MC⊥x軸,交拋物線于點(diǎn)C,記點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為D(C,D不重合),點(diǎn)P是線段MC上一點(diǎn),連結(jié)CD,BD,PD.
(1)求此拋物線的解析式;
(2)當(dāng)a=1時(shí),問(wèn)點(diǎn)P在什么位置時(shí),能使得PD⊥BD;
(3)若點(diǎn)P滿足MP=
14
MC
,作PE⊥PD交x軸于點(diǎn)E,問(wèn)是否存在這樣的點(diǎn)E,使得PE=PD?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新民市一模)已知:如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(0,-4)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式.
(2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)若點(diǎn)M是拋物線上一動(dòng)點(diǎn),點(diǎn)N是直線y=x上一動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出以點(diǎn)M、N、C、O為頂點(diǎn)的四邊形是平行四邊形時(shí),點(diǎn)N的相應(yīng)坐標(biāo).(不需寫(xiě)出計(jì)算過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)一模)已知:如圖,點(diǎn)P是線段AB上的動(dòng)點(diǎn),分別以AP、BP為邊向線段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點(diǎn)M.
(1)當(dāng)△APC和△BPD面積之和最小時(shí),直接寫(xiě)出AP:PB的值和∠AMC的度數(shù);
(2)將點(diǎn)P在線段AB上隨意固定,再把△BPD按順時(shí)針?lè)较蚶@點(diǎn)P旋轉(zhuǎn)一個(gè)角度α,當(dāng)α<60°時(shí),旋轉(zhuǎn)過(guò)程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過(guò)程中,若限定60°<α<120°,∠AMC的大小是否會(huì)發(fā)生變化?若變化,請(qǐng)寫(xiě)出∠AMC的度數(shù)變化范圍;若不變化,請(qǐng)寫(xiě)出∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宿城區(qū)一模)如圖,已知拋物線y=ax2+bx-4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過(guò)A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對(duì)稱軸上,⊙M的半徑為
10

(1)求m的值及拋物線的解析式;
(2)點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PN∥BC,交AC于點(diǎn)N,連接CP,當(dāng)△PNC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)D(2,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫(xiě)出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案