【題目】如圖,某足球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)射門.將足球從離地面0.5m的A處正對(duì)球門踢出(點(diǎn)A在y軸上),足球的飛行高度y(單位:m)與飛行時(shí)間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,己知足球飛行0.8s時(shí),離地面的高度為3.5m.
(1)a= ,c= ;
(2)當(dāng)足球飛行的時(shí)間為多少時(shí),足球離地面最高?最大高度是多少?
(3)若足球飛行的水平距離x(單位:m)與飛行時(shí)間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運(yùn)動(dòng)員正對(duì)球門射門時(shí),離球門的水平距離為28m,他能否將球直接射入球門?
【答案】(1),;(2)當(dāng)足球飛行的時(shí)間s時(shí),足球離地面最高,最大高度是4.5m;(3)能.
【解析】
(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,0.5)(0.8,3.5),代入函數(shù)的表達(dá)式即可求出a,c的值;
(2)利用配方法即可求出足球飛行的時(shí)間以及足球離地面的最大高度;
(3)把x=28代入x=10t得t=2.8,把t=2.8代入解析式求出y的值和2.44m比較大小即可得到結(jié)論.
(1)由題意得:函數(shù)y=at2+5t+c的圖象經(jīng)過(0,0.5)(0.8,3.5),
∴,
解得:,
∴拋物線的解析式為:y=﹣t2+5t+,
故答案為:﹣,;
(2)∵y=﹣t2+5t+,
∴y=﹣(t﹣)2+,
∴當(dāng)t=時(shí),y最大=4.5,
∴當(dāng)足球飛行的時(shí)間s時(shí),足球離地面最高,最大高度是4.5m;
(3)把x=28代入x=10t得t=2.8,
∴當(dāng)t=2.8時(shí),y=﹣×2.82+5×2.8+=2.25<2.44,
∴他能將球直接射入球門.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系XOY中,二次函數(shù)圖像的頂點(diǎn)坐標(biāo)為,且與x軸的兩個(gè)交點(diǎn)間的距離為6.
(1)求二次函數(shù)解析式;
(2)在x軸上方的拋物線上,是否存在點(diǎn)Q,使得以點(diǎn)Q、A、B為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)求出Q點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+b與雙曲線y=(k為常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)點(diǎn)P在x軸上,且△BCP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P1是反比例函數(shù)(k>0)在第一象限圖象上的一點(diǎn),點(diǎn)A1的坐標(biāo)為(2,0).若△P1OA1與△P2A1A2均為等邊三角形,則A2點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,BC=3,tanA=,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△DEC,點(diǎn)F是DE上一動(dòng)點(diǎn),以點(diǎn)F為圓心,FD為半徑作⊙F,當(dāng)FD=_____時(shí),⊙F與Rt△ABC的邊相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、C、D都在⊙O上,過點(diǎn)C作AC∥BD交OB延長線于點(diǎn)A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+3x+1﹣m=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為負(fù)整數(shù),求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司2017年初剛成立時(shí)投資1000萬元購買新生產(chǎn)線生產(chǎn)新產(chǎn)品,此外,生產(chǎn)每件該產(chǎn)品還需要成本40元.按規(guī)定,該產(chǎn)品售價(jià)不得低于60元/件且不超過160元/件,且每年售價(jià)確定以后不再變化,該產(chǎn)品的年銷售量(萬件)與產(chǎn)品售價(jià)(元)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)求2017年該公司的最大利潤?
(3)在2017年取得最大利潤的前提下,2018年公司將重新確定產(chǎn)品售價(jià),能否使兩年共盈利達(dá)980萬元.若能,求出2018年產(chǎn)品的售價(jià);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠ABC=α,過點(diǎn)A作直線MN,使MN∥BC,點(diǎn)D在直線MN上,作射線BD,將射線BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α后交直線AC于點(diǎn)E.
(1)如圖①,當(dāng)α=60°,且點(diǎn)D在射線AN上時(shí),直接寫出線段AB,AD,AE的數(shù)量關(guān)系.
(2)如圖②,當(dāng)α=45°,且點(diǎn)D在射線AN上時(shí),直寫出線段AB、AD、AE的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)α=30°時(shí),若點(diǎn)D在射線AM上,∠ABE=15°,AD=﹣1,請(qǐng)直接寫出線段AE的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com