證明:以PA﹑PB﹑PC為邊長能組成一個銳角三角形,
證明如下:
連接O
1O
2、O
1O
3、O
2O
3,AB、BC、AC,易證△O
1O
2O
3,△ABC都是正三角形
把△APB繞點A旋轉(zhuǎn)60°至△ACPˊ,得△APPˊ是正三角形
PˊC=PB,PA=PPˊ
∴△PP′C就是以PA、PB、PC的邊長組成的三角形
記∠APB=α,∠BPC=β,∠APC=γ
∵P在正三角形ABC的內(nèi)部
∴α>60°,β>60°,γ>60°
又∵P在弧AB的外部,弧AB所含的圓周角為150°
∴α<150°,同理β<150°,γ<150°
∵∠PPˊC=∠APˊC-60°=α-60°,∠CPPˊ=∠CPA-60°=γ-60°
∴∠PˊCP=180°-(α-60°)-(γ-60°)=300°-(α+γ)=β-60°,
∵60°<α,β,γ<150°
∴0°<α-60°,β-60°,γ-60°<90°
∴△PP′C為銳角三角形.
分析:因為三個等圓兩兩外切,根據(jù)相切兩圓的性質(zhì)可得:PA、PB、PC的邊長組成的三角形,又P在正三角形ABC的內(nèi)部,再由等邊三角形的判斷定理和性質(zhì)即可逐步證明.
點評:本題主要考查了線切兩圓的性質(zhì)及等邊三角形的判斷定理和性質(zhì),難度較大,關鍵是在做題前畫出正確的輔助線.