如圖,▱ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=,則AB的長是 1 .
考點:
平行四邊形的判定與性質(zhì);含30度角的直角三角形;勾股定理.
分析:
根據(jù)平行四邊形性質(zhì)推出AB=CD,AB∥CD,得出平行四邊形ABDE,推出DE=DC=AB,根據(jù)直角三角形性質(zhì)求出CE長,即可求出AB的長.
解答:
解:∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=CD,
∵AE∥BD,
∴四邊形ABDE是平行四邊形,
∴AB=DE=CD,
即D為CE中點,
∵EF⊥BC,
∴∠EFC=90°,
∵AB∥CD,
∴∠DCF=∠ABC=60°,
∴∠CEF=30°,
∵EF=,
∴CE=2,
∴AB=1,
故答案為1.
點評:
本題考查了平行四邊形的性質(zhì)和判定,平行線性質(zhì),勾股定理,直角三角形斜邊上中線性質(zhì),含30度角的直角三角形性質(zhì)等知識點的應用,此題綜合性比較強,是一道比較好的題目.
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(遼寧大連卷)數(shù)學(解析版) 題型:解答題
如圖,▱ABCD中,點E、F分別在AD、BC上,且AE=CF.求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(新疆區(qū)、兵團卷)數(shù)學(解析版) 題型:解答題
如圖,▱ABCD中,點O是AC與BD的交點,過點O的直線與BA、DC的延
長線分別交于點E、F.
(1)求證:△AOE≌△COF;
(2)請連接EC、AF,則EF與AC滿足什么條件時,四邊形AECF是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2014屆貴州省畢節(jié)地區(qū)金沙縣八年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題
如圖,▱ABCD的兩條對角線AC和BD相交于點O,并且BD=4,AC=6,BC=.
(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(福建漳州卷)數(shù)學(解析版) 題型:解答題
如圖,▱ABCD中,E,F(xiàn)是對角線BD上兩點,且BE=DF.
(1)圖中共有 對全等三角形;
(2)請寫出其中一對全等三角形: ≌ ,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(湖北十堰卷)數(shù)學(解析版) 題型:填空題
如圖,▱ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=,則AB的長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com