【題目】如圖,直線與雙曲線交于點(diǎn)A、E,AB交雙曲線于另一點(diǎn)B(,),連接EB并延長(zhǎng)交x軸于點(diǎn)F.
(1) ;
(2)求直線AB的解析式;
(3)求△EOF的面積;
(4)若點(diǎn)P為坐標(biāo)平面內(nèi)一點(diǎn),且以A,B,E,P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】(1)2;(2)y=x-2;(3)12;(4)(-4,-2)或(0,-6)或(8,10)
【解析】
(1)把B(,)代入反比例函數(shù)即可求出m的值;
(2)聯(lián)立直線y=2x與反比例函數(shù)即可求出A,E坐標(biāo),然后用待定系數(shù)法確定直線AB的關(guān)系式;
(3)先用待定系數(shù)法求出EB的解析式,再令y=0,得出F的坐標(biāo),最后用三角形的面積公式求出△EOF的面積;
(4)分類討論:分別以AB,BE,AE為對(duì)角線求對(duì)應(yīng)的P的坐標(biāo).
(1)∵點(diǎn)B(2m,m)在反比例函數(shù)上,
∴2m·m=8,解得m=±2,而m>0,
∴m=2
(2)m=2,則點(diǎn)B的坐標(biāo)為(4,2)
聯(lián)立解析式得或
∴點(diǎn)A坐標(biāo)為(-2,-4),E點(diǎn)坐標(biāo)為(2,4)
設(shè)直線AB的解析式為y=k1x+b1,
把A(-2,-4),B(4,2)代入得:-2k1+b1=-4,4k1+b1=2,
解方程組得k1=1, b1=-2,
∴直線AB的解析式為y=x-2;
(3)設(shè)直線EB的解析式為y=k2x+b2,
把E(2,4),B(4,2)代入可得2k2+b2=4,4k2+b2=2,解得k2=-1,b2=6,
∴直線EB的解析式為y=-x+6,
令y=0,解得x=6,故F(6,0)
∴S△EOF==12
(4)①以AB為對(duì)角線時(shí),由A(-2,-4),B(4,2)求出中點(diǎn)O坐標(biāo)為(1,-1),故E(2,4)關(guān)于中點(diǎn)O(1,-1)的對(duì)稱點(diǎn)P為(0,-6);
②以BE為對(duì)角線時(shí),由E(2,4),B(4,2)求出中點(diǎn)O’坐標(biāo)為(3,3),故A(-2,-4)關(guān)于中點(diǎn)O’(3,3)的對(duì)稱點(diǎn)P為(8,10);
③以AE為對(duì)角線時(shí),由A(-2,-4),E(2,4)求出中點(diǎn)O’坐標(biāo)為(0,0),故B(4,2)關(guān)于中點(diǎn)O’(0,0)的對(duì)稱點(diǎn)P為(-4,-2);
故滿足條件的點(diǎn)P的坐標(biāo)為(-4,-2)或(0,-6)或(8,10)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1:y=2x+4與y軸交于A點(diǎn),與x軸交于點(diǎn)B,經(jīng)過(guò)A點(diǎn)的直線l2與直線l1所夾的銳角為45°.
(1)過(guò)點(diǎn)B作CB⊥AB,交l2于C,求點(diǎn)C的坐標(biāo).
(2)求l2的函數(shù)解析式.
(3)在直線l1上存在點(diǎn)M,直線l2上存在點(diǎn)N,使得點(diǎn)A、O、M、N四點(diǎn)組成的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B兩點(diǎn)的坐標(biāo)分別為(6,0),(0,6),點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒個(gè)單位的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BO方向以每秒1個(gè)單位的速度向終點(diǎn)Q運(yùn)動(dòng),將△PQO沿BO翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)C,若四邊形QPOC為菱形,則點(diǎn)C的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在新農(nóng)村改造工程中需要修建一段東西方向全長(zhǎng)1000米的道路(記作AB).已知C點(diǎn)周圍350米范圍內(nèi)有一電力設(shè)施區(qū)域.在A處測(cè)得C在A的北偏東60°方向上,在B處測(cè)得C在B的北偏西45°方向上.(≈1.732,≈1.414)
(1)道路AB是否穿過(guò)電力設(shè)施區(qū)域?為什么?
(2)在施工250米后,為了盡量減少施工對(duì)城市交通所造成的影響,加快了施工進(jìn)度,實(shí)際工作效率變成了原計(jì)劃工作效率的1.5倍,結(jié)果提前5天完成了修路任務(wù),則原計(jì)劃每天修路多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°),若∠1=110°,則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,連接DE.
(1)求證:DE⊥BE;
(2)如果OE⊥CD,求證:BD·CE=CD·DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過(guò)B點(diǎn)作BG⊥AE于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:
①AH=DF; ②∠AEF=45°; ③S四邊形EFHG=S△DEF+S△AGH,
其中正確的結(jié)論有_____________________.(填正確的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com