如圖,D、E分別是△ABC的邊AB、AC上的點,DE∥BC,CD平分∠ACB,∠AED=40°,∠CDE的度數(shù)是________.

20°
分析:由角平分線的定義,結(jié)合平行線的性質(zhì),易求∠EDC的度數(shù).
解答:∵DE∥BC,∠AED=80°,
∴∠ACB=∠AED=40°,
∵CD平分∠ACB,
∴∠BCD=∠ACB=20°,
∴∠EDC=∠BCD=20°.
故答案為:20°.
點評:考查了平行線的性質(zhì)和角平分線的定義,這類題首先利用平行線的性質(zhì)確定內(nèi)錯角相等,然后根據(jù)角平分線定義得出所求角與已知角的關(guān)系轉(zhuǎn)化求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,E、F分別是等腰△ABC的腰AB、AC的中點.用尺規(guī)在BC邊上求作一點M,使四邊形AEMF為菱形.
(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:AB、AC分別是⊙O的直徑和弦,D為弧AC上一點,DE⊥AB于點H,交⊙O于點E,交AC于點F.P為ED延長線上一點,連PC.
(1)若PC與⊙O相切,判斷△PCF的形狀,并證明.
(2)若D為弧AC的中點,且
BC
AB
=
3
5
,DH=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB和AC分別是⊙O的直徑和弦,OD⊥AC于D點,若OA=4,∠A=30°,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E、F分別是正方形ABCD邊BC、AD上的點,且BE=DF
求證:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

桌上放著一個圓柱和一個長方體,如圖(1),請說出下列三幅圖(如圖(2))分別是從哪個方向看到的.

查看答案和解析>>

同步練習(xí)冊答案