拋物線y=x2-mx-2的頂點位置與m有如下關(guān)系


  1. A.
    m=0時,頂點在x軸上
  2. B.
    m>0時,頂點在y軸左側(cè)
  3. C.
    m<0時,頂點在y軸右側(cè)
  4. D.
    不論m為何實數(shù)值,頂點永遠在x軸下方
D
分析:拋物線y=x2-mx-2=(x-2-,根據(jù)二次函數(shù)的性質(zhì),得出拋物線的頂點坐標(,-),討論、解答出即可.
解答:拋物線y=x2-mx-2可化為y=(x-2-,
A、當m=0時,頂點坐標為(0,-2),在y軸上;故本項錯誤;
B、當m>0時,>0,-<0,所以,頂點在y軸右側(cè);故本項錯誤;
C、當m<0時,<0,->0,頂點在y軸左側(cè);故本項錯誤;
D、不論m為何實數(shù)值,-<0,所以頂點永遠在x軸下方;故本項正確;
故選D.
點評:本題主要考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標是(-,).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=-x2+mx過點A(4,0),O為坐標原點,Q是拋物線的頂點.
(1)求m的值;
(2)點P是x軸上方拋物線上的一個動點,過P作PH⊥x軸,H為垂足.有一個同學說:“在x軸上方拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠,所以當點P運動至點Q時,折線P-H-O的長度最長”,請你用所學知識判斷:這個同學的說法是否正確.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-x2+mx+(7-2m)(m為常數(shù)).
(1)證明:不論m為何值,拋物線與x軸恒有兩個不同的交點;
(2)若拋物線與x軸的交點A(x1,0)、B(x2,0)的距離為AB=4(A在B的左邊),且拋物線交了軸的正半軸于C,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:直角梯形OABC的四個頂點是O(0,0),A(
3
2
,1),精英家教網(wǎng)B(s,t),C(
7
2
,0),拋物線y=x2+mx-m的頂點P是直角梯形OABC內(nèi)部或邊上的一個動點,m為常數(shù).
(1)求s與t的值,并在直角坐標系中畫出直角梯形OABC;
(2)當拋物線y=x2+mx-m與直角梯形OABC的邊AB相交時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(O,-6).
(1)求拋物線的解析式;
(2)拋物線與x軸交于另一點D,求△ABD的面積;
(3)當y<0,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+mx-
34
m2(m>0).
(1)求證:該拋物線與x軸必有兩個交點;
(2)若拋物線與x軸的兩個交點分別為A、B(點A在點B的左側(cè)),且AB=4,求m的值;
(3)在條件(2)的前提下,y軸上是否存在點C,使得△ABC為直角三角形?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案