【題目】如圖,已知AB是⊙O的直徑,點P是⊙O上一點,連接OP,點A關于OP的對稱點C恰好落在⊙O上.
(1)求證:OP∥BC;
(2)過點C作⊙O的切線CD,交AP的延長線于點D.如果∠D=90°,DP=1,求⊙O的直徑.
【答案】(1)見解析;(2)⊙O的直徑AB=4.
【解析】
(1)由題意可知,根據同弧所對的圓心角相等得到∠AOP=∠AOC,再根據同弧所對的圓心角和圓周角的關系得出∠ABC=∠AOC,利用同位角相等兩直線平行,可得出PO與BC平行;
(2)由CD為圓O的切線,利用切線的性質得到OC垂直于CD,又AD垂直于CD,利用平面內垂直于同一條直線的兩直線平行得到OC與AD平行,根據兩直線平行內錯角相等得到∠APO=∠COP,由∠AOP=∠COP,等量代換可得出∠APO=∠AOP,再由OA=OP,利用等邊對等角可得出一對角相等,等量代換可得出三角形AOP三內角相等,確定出三角形AOP為等邊三角形,根據等邊三角形的內角為60°得到∠AOP為60°,由OP平行于BC,利用兩直線平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC為等邊三角形,可得出∠COB為60°,利用平角的定義得到∠POC也為60°,再加上OP=OC,可得出三角形POC為等邊三角形,得到內角∠OCP為60°,可求出∠PCD為30°,在直角三角形PCD中,利用30°所對的直角邊等于斜邊的一半可得出PD為PC的一半,而PC等于圓的半徑OP等于直徑AB的一半,可得出PD為AB的四分之一,即AB=4PD=4.
(1)證明:∵A關于OP的對稱點C恰好落在⊙O上.
∴
∴∠AOP=∠COP,
∴∠AOP=∠AOC,
又∵∠ABC=∠AOC,
∴∠AOP=∠ABC,
∴PO∥BC;
(2)解:連接PC,
∵CD為圓O的切線,
∴OC⊥CD,又AD⊥CD,
∴OC∥AD,
∴∠APO=∠COP,
∵∠AOP=∠COP,
∴∠APO=∠AOP,
∴OA=AP,
∵OA=OP,
∴△APO為等邊三角形,
∴∠AOP=60°,
又∵OP∥BC,
∴∠OBC=∠AOP=60°,又OC=OB,
∴△BCO為等邊三角形,
∴∠COB=60°,
∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,
∴△POC也為等邊三角形,
∴∠PCO=60°,PC=OP=OC,
又∵∠OCD=90°,
∴∠PCD=30°,
在Rt△PCD中,PD=PC,
又∵PC=OP=AB,
∴PD=AB,
∴AB=4PD=4.
科目:初中數學 來源: 題型:
【題目】如圖,圓心在坐標原點的⊙O,與坐標軸的交點分別為A、B和C、D.弦CM交OA于P,連結AM,已知tan∠PCO=,PC、PM是方程x2﹣px+20=0的兩根.
(1)求C點的坐標;
(2)寫出直線CM的函數解析式;
(3)求△AMC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在“宏揚傳統文化,打造書香校園”活動中,學校計劃開展四項活動:“A﹣國學誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意愿,隨機調查了部分學生,結果統計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調查的總人數為 人,扇形統計圖中,希望參加活動D所占圓心角為 度,根據題中信息補全條形統計圖.
(2)學校現有800名學生,請根據圖中信息,估算全校學生希望參加活動A有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為、、.
(1)經過怎樣的平移,可使△ABC的頂點A與坐標原點O重合,并直接寫出此時點C 的對應點坐標;(不必畫出平移后的三角形);
(2)將△ABC繞坐標原點逆時針旋轉90°,得到△A′B′C′,畫出△A′B′C′;
(3)在(2)問的條件下,求線段BC掃過的圖形面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2AB.將矩形ABCD對折,得到折痕MN;沿著CM折疊,點D的對應點為E,ME與BC的交點為F;再沿著MP折疊,使得AM與EM重合,折痕為MP,此時點B的對應點為G.下列結論:
①△CMP是直角三角形;
②點C、E、G不在同一條直線上;
③PC=MP;
④BP=AB;
⑤PG=2EF.
其中一定成立的是_____(把所有正確結論的序號填在橫線上).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.
(1)若直線經過、兩點,求直線和拋物線的解析式;
(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標;
(3)設點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,過點B有一條直線1與正方形ABCD的對角線AC所在直線相交于點G,過點C、A分別作直線1的垂線段CE、AF于點E、F,對角線AC、BD相交于點O,連接OE、OF.
(1)如圖1,猜測OE、OF有怎樣的數量關系和位置關系,并說明理由;
(2)若正方形邊長為10.
①若直線1在如圖1的位置,當時,求EG的長;
②若直線1在如圖2的位置,當時,請直接寫出EG的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com