【題目】閱讀探索題:

(1)如圖1,OP是∠MON的平分線,以O為圓心任意長為半徑作弧,分別交射線ON、OMC、B兩點,在射線OP上任取一點A(點O除外),連接AB、AC.求證:△AOB≌△AOC.

(2)請你參考以上方法,解答下列問題:

如圖2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,試判斷BCAC、AD之間的數(shù)量關(guān)系并證明.

【答案】(1)證明見解析(2)證明見解析

【解析】

1)根據(jù)以O為圓心任意長為半徑作弧,交射線ON,OMC,B兩點,OP是∠MON的平分線,運用SAS判定AOB≌△AOC即可;
(2)先截取CECA,連接DE,根據(jù)SAS判定CAD≌△CED,得出ADDE,ACED=60°,ACCE,進而得出結(jié)論BCACAD;

(1)

證明:在AOBAOC中,

∴△AOB≌△AOCSAS).

(2)

CB上截取CECA,

CD平分∠ACB,

∴∠ACDBCD

ACDECD中,

∴△ACD≌△ECDSAS),

∴∠CADCED=60°,

∵∠ACB=90°,

∴∠B=30°,

∴∠EDB=30°,

即∠EDBB,

DEEB,

BCCEBE,

BCACDE

BCACAD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點之間AB的長.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°0.59,cos36°0.1,tan36°0.73,1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的函數(shù)y=(a+2)x2﹣(2a﹣1)x+a﹣2的圖象與坐標(biāo)軸有兩個交點,則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,O為矩形ABCD的中心,以D為圓心1為半徑作⊙D,P為⊙D上的一個動點,連接AP、OP,則△AOP面積的最大值為( 。

A. 4 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市第一次用3000元購進某種干果銷售,第二次又調(diào)撥9000元購進該種干果,但第二次的進價比第一次的進價提高了20%,購進干果數(shù)量是第一次的2倍還多300千克,如果超市先按每千克9元的價格出售,當(dāng)大部分干果出售后,最后的600千克按原售價的7折售完,超市兩次銷售這種干果共盈利________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,DAC的中點,點EBC的延長線上,點FAB上,.AB=5,則BE+BF的長度為(

A.7.5B.8C.8.5D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,

1)作出關(guān)于軸對稱的,并寫出三個頂點的坐標(biāo);

2)請計算的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(解決問題)如圖1,在中,于點.點邊上任意一點,過點,,垂足分別為點,點

1)若,,則的面積是______,______

2)猜想線段,的數(shù)量關(guān)系,并說明理由.

3)(變式探究)如圖2,在中,若,點內(nèi)任意一點,且,,垂足分別為點,點,點,求的值.

4)(拓展延伸)如圖3,將長方形沿折疊,使點落在點上,點落在點處,點為折痕上的任意一點,過點,,垂足分別為點,點.若,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時,不等式x+b的解集;

(3)若點Px軸上,連接APABC的面積分成1:3兩部分,求此時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案