(2003•宜昌)如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點(diǎn),EF∥AD交CD于點(diǎn)F,探測(cè)裝置(設(shè)為點(diǎn)P)從E出發(fā)沿EF前行時(shí),可探測(cè)的區(qū)域是以點(diǎn)P為中心,PA為半徑的一個(gè)圓(及其內(nèi)部).當(dāng)(探測(cè)裝置)P到達(dá)點(diǎn)P處時(shí),⊙P與BC、EF、AD分別交于G、F、H點(diǎn).
(1)求證:FD=FC;
(2)指出并說(shuō)明CD與⊙P的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2-2)平方千米,當(dāng)(探測(cè)裝置)P從點(diǎn)P出發(fā)繼續(xù)前行多少千米到達(dá)點(diǎn)P1處時(shí),A、B、C、D四點(diǎn)恰好在⊙P1上.

【答案】分析:(1)要證明FD=FC,只要證明AD∥EF∥BC,根據(jù)平行線分線段成比例定理,即可求解.
(2)DF與⊙P相切.要證明DF與⊙P相切,只要證明EF過(guò)圓心P,OF過(guò)半徑PF的外端,就可以求解.
(3)易證HG∥CD,Rt△PMH是等腰直角三角形,根據(jù)S△HDF=HD•DF,就可以求出NE=MF的長(zhǎng).
解答:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,
又∵AD∥EF,
∴AD∥EF∥BC,
又∵AE=BE,
∴DF=FC.(1分)

(2)解:DF與⊙P相切.
理由如下:
∵四邊形ABCD是矩形,
∴∠D=90°,即AD⊥DF,
∵AD∥EF,
∴EF⊥DF;
又∵EF過(guò)圓心P,OF過(guò)半徑PF的外端,
∴DF切⊙P于點(diǎn)F.(3分)

(3)解:如圖,連接HF,PH,延長(zhǎng)FE交⊙P于點(diǎn)N,EF交HG于點(diǎn)M,設(shè)HD=x,DF=y;
∵四邊形ABGH是正方形,
∴AB∥HG,
又∵四邊形ABCD是矩形,
∴AB∥CD,
∴HG∥CD;
又∵AD∥EF,
∴HD=MF=xDF=MH=y.
又∵正方形ABGH內(nèi)接于⊙P,
∴NE=MF=x,∠PHM=45°,
∴在RT△PMH中,⊙P半徑PH=HM=y,
∴NF=NE+EP+PM+MF=2x+2y;
又∵NF=αPH=αy,
∴2x+2y=2y.(4分)①
又∵S△HDF=HD•DF=xy=2-2,(5分)②
由①、②可得x=2-2,y=2.(6分)
∴PP1=PF-P1F=PM+MF-P1F=y+x-P1F=y+x-EF=y+x-(y+y+x)=x,
∴PP1=-1(千米).(8分)
答:當(dāng)探查裝置P以P出發(fā)前行(-1)千米到達(dá)P1時(shí),A、B、C、D四點(diǎn)恰好在⊙P1上.
點(diǎn)評(píng):本題主要考查了平行線分線段成比例定理,以及圓的切線的判定方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•宜昌)如圖,PA切⊙O于點(diǎn)A,割線PBC交⊙O于B、C兩點(diǎn),∠APC的平分線分別交AC、AB于D、E兩點(diǎn).請(qǐng)?jiān)趫D中找出2對(duì)相似三角形,并從中選擇一對(duì)相似三角形說(shuō)明其為什么相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2003•宜昌)如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點(diǎn),EF∥AD交CD于點(diǎn)F,探測(cè)裝置(設(shè)為點(diǎn)P)從E出發(fā)沿EF前行時(shí),可探測(cè)的區(qū)域是以點(diǎn)P為中心,PA為半徑的一個(gè)圓(及其內(nèi)部).當(dāng)(探測(cè)裝置)P到達(dá)點(diǎn)P處時(shí),⊙P與BC、EF、AD分別交于G、F、H點(diǎn).
(1)求證:FD=FC;
(2)指出并說(shuō)明CD與⊙P的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2-2)平方千米,當(dāng)(探測(cè)裝置)P從點(diǎn)P出發(fā)繼續(xù)前行多少千米到達(dá)點(diǎn)P1處時(shí),A、B、C、D四點(diǎn)恰好在⊙P1上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點(diǎn),EF∥AD交CD于點(diǎn)F,探測(cè)裝置(設(shè)為點(diǎn)P)從E出發(fā)沿EF前行時(shí),可探測(cè)的區(qū)域是以點(diǎn)P為中心,PA為半徑的一個(gè)圓(及其內(nèi)部).當(dāng)(探測(cè)裝置)P到達(dá)點(diǎn)P處時(shí),⊙P與BC、EF、AD分別交于G、F、H點(diǎn).
(1)求證:FD=FC;
(2)指出并說(shuō)明CD與⊙P的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2-2)平方千米,當(dāng)(探測(cè)裝置)P從點(diǎn)P出發(fā)繼續(xù)前行多少千米到達(dá)點(diǎn)P1處時(shí),A、B、C、D四點(diǎn)恰好在⊙P1上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案