數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).,且DE交△ABC外角的平分線CE于點(diǎn)E,求證:AD=DE.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說明理由;
(2)小亮提出:如圖3,點(diǎn)D是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)          (填“正確”或“不正確”).
解:(1)小穎的觀點(diǎn)正確 .
證明:如圖,在上取一點(diǎn),使BM=BD,連接MD.

∵△ABC是等邊三角形,∴,BA=BC.
∴△BMD是等邊三角形, ..
∵CE是外角的平分線,
, 
.∴.
,

.
又∵,即.
∴△AMD≌△DCE(ASA).
∴AD=DE.
(2)正確

試題分析:解:(1)小穎的觀點(diǎn)正確 .
證明:如圖,在上取一點(diǎn),使BM=BD,連接MD.

∵△ABC是等邊三角形,∴,BA=BC.
∴△BMD是等邊三角形, ..
∵CE是外角的平分線,
, 
.∴.


.
又∵,即.
∴△AMD≌△DCE(ASA).
∴AD=DE.
(2)正確
點(diǎn)評(píng):本題難度中等。主要考查學(xué)生對(duì)探究例子中的信息進(jìn)行歸納總結(jié)。并能夠結(jié)合三角形的性質(zhì)是解題關(guān)鍵。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,OA=OB,OC=OD,∠O=50°,∠D=35°,則∠AEC等于(   )
A.60°B.50° C.45°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一艘海輪位于燈塔P的南偏東45方向,距離燈塔100海里的A處,它計(jì)劃沿正北方向航行,去往位于燈塔P的北偏東30方向上的B處.

(1)B處距離燈塔P有多遠(yuǎn)?
(2)圓形暗礁區(qū)域的圓心位于PB的延長(zhǎng)線上,距離燈塔200海里的O處.已知圓形暗礁區(qū)域的半徑為50海里,進(jìn)入圓形暗礁區(qū)域就有觸礁的危險(xiǎn).請(qǐng)判斷若海輪到達(dá)B處是否有觸礁的危險(xiǎn),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直角三角形三邊長(zhǎng)分別為3,4,m,則m=             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分7分)如圖,已知在Rt△ABC,AB=AC,∠BAC=90°,過A的任一條直線AN,BD⊥AN于D,CE⊥AN于E。
⑴求證:DE=BD-CE
⑵如將直線AN繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn),使它不經(jīng)過△ABC的內(nèi)部,再作BD⊥AN于D,CE⊥AN于E,那么DE、DB、CE之間存在等量關(guān)系嗎?若存在,請(qǐng)證明你的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延長(zhǎng)線于M,連接CD.下列結(jié)論:①BC+CE=AB,②BD=,③BD=CD,④∠ADC=45°,⑤AC+AB=2AM;其中不正確的結(jié)論有(    )

A.0個(gè)              B.1個(gè)     C.2個(gè)             D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M,N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,中,,上一點(diǎn),延長(zhǎng)線上一點(diǎn),
,若相交于,求證:。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直角△ABC的周長(zhǎng)為6+2,其中一條直角邊的長(zhǎng)為2,則另一條直角邊的長(zhǎng)為  

查看答案和解析>>

同步練習(xí)冊(cè)答案