分析 (1)根據(jù)已知直接證明有一個(gè)直角且鄰邊相等即可;
(2)通過(guò)證明三角形CEP和三角形DBP全等,結(jié)合等量代換即可證明;
(3)與(2)同理可證EC=DB,EC∥DB,進(jìn)一步證明△AOC≌△BOD,結(jié)合等量代換和平行線的性質(zhì)即可解答.
解答 解:(1)正方形;
如圖2,
∵△AOB是等腰直角三角形,
∴∠AOE=90°,AO=BO,
∵OE=BO,
∴AO=OE,
∴平行四邊形ACEF是正方形;
(2)如圖1,
∵P是CD的中點(diǎn),
∴PC=PD,
在△CPE和△BPD中,
$\left\{\begin{array}{l}{PC=PE}\\{∠CPE=∠DPB}\\{PE=PB}\end{array}\right.$,
∴△CPE≌△BPD,
∴EC=DB,
∵OA=OB,OC=OD,
∴AC=DB,
∴EC=AC,
∴平行四邊形ACEF是菱形,
∵△CPE≌△BPD,
∴∠CEP=∠DBP,
∴EC∥OB,
∵∠O=90°,
∴∠ACE=90°,
∴菱形ACEF是正方形;
(3)如圖3,
與(2)同理可證△CPE≌△BPD,
∴EC=DB,EC∥DB,
∵∠AOC+∠COB=∠COB+∠DOB=90°,
∴∠AOC=∠DOB,
在△AOC和△BOD中,
$\left\{\begin{array}{l}{OA=OB}\\{∠AOC=∠BOD}\\{OC=OD}\end{array}\right.$,
∴△AOC≌△BOD,
∵∠COD=90°,
∴△AOC可以看作△BOD順時(shí)針繞點(diǎn)O旋轉(zhuǎn)90°得到,
∴AC⊥DB,AC=DB,
∴EC=AC,
∴平行四邊形ACEF是菱形,
∵EC∥DB,
∴AC⊥EC,
∴菱形ACEF是正方形.
點(diǎn)評(píng) 此題主要考查幾何變換中的旋轉(zhuǎn),在旋轉(zhuǎn)中找到并證明全等三角形,并靈活運(yùn)用全等三角形的性質(zhì)進(jìn)行推理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
銷售單價(jià)x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天銷售量(y件) | … | 500 | 400 | 300 | 200 | 100 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9.98×107 | B. | 9.98×108 | C. | O.998×109 | D. | 99.8×107 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com