【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的切線與AB的延長線交于點P,連接AC,若∠A=30°,PC=3,則BP的長為

【答案】
【解析】解:∵OA=OC,∠A=30°,
∴∠OCA=∠A=30°,
∴∠COB=∠A+∠ACO=60°,
∵PC是⊙O切線,
∴∠PCO=90°,∠P=30°,
∵PC=3,
∴OC=PCtan30°= ,PC=2OC=2
∴PB=PO﹣OB= ,
故答案為

在RT△POC中,根據(jù)∠P=30°,PC=3,求出OC、OP即可解決問題.本題考查切線的性質(zhì)、直角三角形中30度角所對的直角邊等于斜邊的一半,銳角三角函數(shù)等知識,解題的關(guān)鍵是利用切線的性質(zhì),在RT△POC解三角形是突破口,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是直角三角形ABC斜邊上的中線,AEADCB延長線于E , 則圖中一定相似的三角形是( 。
A.△AED與△ACB
B.△AEB與△ACD
C.△BAE與△ACE
D.△AEC與△DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為4,△ABC是⊙O的內(nèi)接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2+(m+1)x+ =0的一個實數(shù)根的倒數(shù)恰是它本身,則m的值是( )
A.﹣
B.
C.﹣
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圖案中三條彩條所占面積是圖案面積的 ,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B兩點分別在x軸、y軸上,OA=3,OB=4,連接AB.點P在平面內(nèi),若以點P、A、B為頂點的三角形與△AOB全等(點P與點O不重合),則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點P是弦AC上一動點(不與A,C重合),過點P作PE⊥AB,垂足為E,射線EP交 于點F,交過點C的切線于點D.

(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是 的中點時,判斷以A,O,C,F(xiàn)為頂點的四邊形是什么特殊四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.

(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明,若不成立,請說明理由;
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3 時,求線段DH的長.

查看答案和解析>>

同步練習(xí)冊答案