1.在$\sqrt{20}$、$\frac{{\sqrt{2}}}{3}$、$\sqrt{\frac{1}{a}}$、$-\sqrt{0.1}$、$\sqrt{x^3}$中,是最簡二次根式的是$\frac{\sqrt{2}}{3}$.

分析 直接利用最簡二次根式的概念:(1)被開方數(shù)不含分母;(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式,分析得出答案.

解答 解:在$\sqrt{20}$、$\frac{{\sqrt{2}}}{3}$、$\sqrt{\frac{1}{a}}$、$-\sqrt{0.1}$、$\sqrt{x^3}$中,只有$\frac{{\sqrt{2}}}{3}$是最簡二次根式.
故答案為:$\frac{\sqrt{2}}{3}$.

點(diǎn)評 此題主要考查了最簡二次根式,正確把握定義是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)分別在格點(diǎn)上,請?jiān)诰W(wǎng)格中按要求作出下列圖形,并標(biāo)注相應(yīng)的字母.
(1)作△A1B1C1,使得△A1B1C1與△ABC關(guān)于直線l對稱;
(2)求△A1B1C1得面積(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.已知三元一次方程組$\left\{\begin{array}{l}x-y=1\\ x+z=2\\ z-y=17\end{array}\right.$,則x-y+z的值為10.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算
(1)$\sqrt{{{(-4)}^2}}-{(\sqrt{5})^2}$
(2)$\frac{1}{{1+\sqrt{3}}}+\sqrt{\frac{4}{3}}$
(3)已知m=$\sqrt{5}$+2,n=$\sqrt{5}$-2,求m2-mn+n2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.為了比較甲、乙兩塊地的小麥哪塊長得更整齊,應(yīng)選擇的統(tǒng)計(jì)量為(  )
A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,將表面積為550cm2的包裝盒剪開,鋪平,紙樣如圖所示,包裝盒的高為15cm,請求出包裝盒底面的長與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在△ABC中,∠ABP=2∠PBC,∠ACP=2∠PCB.
(1)若∠BPC=140°,求∠A的度數(shù).
(2)求證:∠P=120°+$\frac{1}{3}$∠A.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.計(jì)算:
(1)$\sqrt{8}$+($\frac{1}{2}$)-1-(π+2)0+|1-$\sqrt{2}$|
(2)2(a-3)(a+2)-(4+a)(4-a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.已知關(guān)于x、y的多項(xiàng)式ax2+bxy+x2-x-2xy+y不含二次項(xiàng),求3a-5b的值.

查看答案和解析>>

同步練習(xí)冊答案