【題目】如圖,在△ABC中,∠A=90°.
(1)用直尺和圓規(guī)作出BC的垂直平分線(保留作圖痕跡,不要求寫作法);
(2)BC的垂直平分線與AC相交于D,連結(jié)BD,若∠C=30°,則∠ABD=

【答案】
(1)解:如圖所示


(2)30°
【解析】解:(2)∵∠A=90°,∠C=30°, ∴∠ABC=60°,
∵DE是BC的垂直平分線,
∴BD=CD,
∴∠C=∠DBC=30°,
∴∠ABD=60°﹣30°=30°,
所以答案是:30°.
【考點精析】利用線段垂直平分線的性質(zhì)對題目進行判斷即可得到答案,需要熟知垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當點P到達點C時,點Q也停止運動.設點P,Q運動的時間為t秒.

(1)從運動開始,當t取何值時,PQ∥CD?

(2)從運動開始,當t取何值時,△PQC為直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.

問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.

(1)直接寫出點D(m,n)所有的特征線;

(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;

(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當點A′在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校進行書法比賽,有39名同學參加預賽,只能有19名同學參加決賽,他們預賽的成績各不相同,其中一名同學想知道自己能否進入決賽,不僅要了解自己的預賽成績,還要了解這39名同學預賽成績的( 。
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國南宋時期杰出的數(shù)學家楊輝是錢塘人,下面的圖表是他在《詳解九章算術》中記載的“楊輝三角”.此圖揭示了 (為非負整數(shù))的展開式的項數(shù)及各項系數(shù)的有關規(guī)律.

(1)請仔細觀察,填出(a+b)4的展開式中所缺的系數(shù).(a+b)4=a4+4a3b+a2b2+4ab2+b4
(2)此規(guī)律還可以解決實際問題:假如今天是星期三,再過7天還是星期三,那么再過 天是星期

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:

∵a=3,b=4,c=5,∴p==6,∴S===6

事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;

(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王去早市為餐館選購蔬菜,他指著標價為每斤3元的豆角問攤主:這豆角能便宜嗎?攤主:多買按八折,你要多少斤?小王報了數(shù)量后攤主同意按八折賣給小王,并說:之前一人只比你少買5斤就是按標價,還比你多花了3元呢!小王購買豆角的數(shù)量是( 。

A. 30 B. 25 C. 20 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AB=8,周長等于24,則AD=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】旋轉(zhuǎn)不改變圖形的

查看答案和解析>>

同步練習冊答案