【題目】用直尺和圓規(guī)作一個角等于已知角,如圖,能得出∠A′O′B′=∠AOB的依據(jù)是( )
A.SAS B.SSS C.ASA D.AAS
【答案】B.
【解析】
試題分析:我們可以通過其作圖的步驟來進行分析,作圖時滿足了三條邊對應相等,于是我們可以判定是運用SSS,答案可得.
試題解析:作圖的步驟:
①以O為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;
②任意作一點O′,作射線O′A′,以O′為圓心,OC長為半徑畫弧,交O′A′于點C′;
③以C′為圓心,CD長為半徑畫弧,交前弧于點D′;
④過點D′作射線O′B′.
所以∠A′O′B′就是與∠AOB相等的角;
作圖完畢.
在△OCD與△O′C′D′,
∴△OCD≌△O′C′D′(SSS),
∴∠A′O′B′=∠AOB,
顯然運用的判定方法是SSS.
故選:B.
答案:作圖—基本作圖;全等三角形的判定與性質(zhì).
科目:初中數(shù)學 來源: 題型:
【題目】2016年5月9日﹣11日,貴州省第十一屆旅游產(chǎn)業(yè)發(fā)展大會在準一市茅臺鎮(zhèn)舉行,大會推出五條遵義精品旅游線路:A紅色經(jīng)典,B醉美丹霞,C生態(tài)茶海,D民族風情,E避暑休閑.某校攝影小社團在“祖國好、家鄉(xiāng)美”主題宣傳周里,隨機抽取部分學生舉行“最愛旅游路線”投票活動,參與者每人選出一條心中最愛的旅游路線,社團對投票進行了統(tǒng)計,并繪制出如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請解決下列問題.
(1)本次參與投票的總?cè)藬?shù)是 人.
(2)請補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中,線路D部分的圓心角是 度.
(4)全校2400名學生中,請你估計,選擇“生態(tài)茶!甭肪的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
求l+2+22+23+24+…+22013的值.
解:設S=l+2+22+23+24+…+22012+22013 , 將等式兩邊同時乘2,
得2S=2+22+23+24+25+…+22013+22014 .
將下式減去上式,得2S﹣S=22014一l
即S=22014一l,
即1+2+22+23+24+…+22013=22014一l
仿照此法計算:
(1)1+3+32+33+…+3100
(2)1+ +…+ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值.
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分線交AB邊于點P,再以點P為圓心,PA長為半徑作⊙P;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中BC與⊙P的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設 A(﹣2,y ),B(1,y ),C(2,y )是拋物線 y=(m2+1)(x-1)2-3 上的三點,則y1,y2,y3的大小關(guān)系為( )
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC、∠ABC、∠ACB的外角分別記為∠α,∠β,∠γ,若∠α:∠β:∠γ=3:4:5,則∠BAC:∠ABC:∠ACB等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高科技創(chuàng)新意識,我市某中學在“2016年科技節(jié)”活動中舉行科技比賽,包括“航!、“機器人”、“環(huán)!、“建!彼膫類別(每個學生只能參加一個類別的比賽),各類別參賽人數(shù)統(tǒng)計如圖:
請根據(jù)以上信息,解答下列問題:
(1)全體參賽的學生共有 人,“建!痹谏刃谓y(tǒng)計圖中的圓心角是 °;
(2)將條形統(tǒng)計圖補充完整;
(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎的學生為1名男生和2名女生,獲得“建模”類一等獎的學生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎的學生中各隨機選取1名學生參加市級“環(huán)保建模”考察活動,問選取的兩人中恰為1男生1女生的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com