如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD上,折痕的一端E點(diǎn)在邊BC上,BE=10.則折痕的長為   
【答案】分析:(1)根據(jù)題意畫出圖形,過點(diǎn)E作EH⊥AD于點(diǎn)H,在Rt△EGH中利用勾股定理求出GH的長進(jìn)而可得出AG的長,設(shè)AF=x,由翻折變換的性質(zhì)可知FG=8-x,在Rt△AGF中利用勾股定理求出x的值,可得出BF的值,再在Rt△BEF中利用勾股定理即可求出EF的長.
(2)連接BF,可利用直角三角形ABF求得,由于折疊,四邊形BGDF是菱形,其中BF=BG=10,再解方程可得答案.
解答:解:(1)如圖(1)所示:過點(diǎn)E作EH⊥AD于點(diǎn)H,則AH=BE=10,F(xiàn)E=AB=8,
∵△GFE由△BFE翻折而成,
∴GE=BE=10,
在Rt△EGH中,
∵GH===6,
∴AG=AH-GH=10-6=4,
設(shè)AF=x,則BF=GF=8-x,
在Rt△AGF中,
∵AG2+AF2=GF2,即42+x2=(8-x)2,解得x=3,
∴BF=8-3=5,
在Rt△BEF中,
EF===5

(2)連接BF、BE與折痕GF交于O,如圖(2)
由于折疊,
∴BE⊥GF,BO=OE,BG=GE,
四邊形ABCD為長方形,
∴AD∥BC
∴∠1=∠2,
∴△BOG≌△EOF(ASA),
∴OF=OG,又OB=OE,BE⊥GF
∴四邊形BGEF是菱形,
∴BF=BG=10;
Rt△ABF中,AF2+AB2=BF2,
AF2=102-82,
解得AF=6.
則有BL=6,
LG=10-6=4,
在Rt△FLG中,由勾股定理得:
FG==4
故答案為:5或4
點(diǎn)評:本題考查的是翻折變換,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(30):25.3 軸對稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動,△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊答案