【題目】 如圖,已知矩形紙片ABCD,AD=2,AB=4,將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB、CD交于點G、F,AE與FG交于點O.
(1)如圖1,求證:A、G、E、F四點圍成的四邊形是菱形;
(2)如圖2,點N是線段BC的中點,且ON=OD,求折痕FG的長.
【答案】(1)證明見解析;(2)折痕FG的長是.
【解析】
(1)根據折疊的性質判斷出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,從而判斷出EF=AG,得出四邊形AGEF是平行四邊形,繼而結合AG=GE,可得出結論.
(2)連接ON,得出ON是梯形ABCE的中位線,設CE=x,在RT△ADE中,利用勾股定理可解出x,繼而可得出折痕FG的長度.
(1)證明:由折疊的性質可得,GA=GE,∠AGF=∠EGF,
∵DC∥AB,
∴∠EFG=∠AGF,
∴∠EFG=∠EGF,
∴EF=EG=AG,
∴四邊形AGEF是平行四邊形(EF∥AG,EF=AG),
又∵AG=GE,
∴四邊形AGEF是菱形.
(2)解:連接ON,
∵O,N分別是AE,CB的中點,
故ON是梯形ABCE的中位線,
設CE=x,則ED=4﹣x,2ON=CE+AB=x+4,
在Rt△AED中,AE=2OE=2ON=x+4,
AD2+DE2=AE2,
∴22+(4﹣x)2=(4+x)2,
得x=,
OE=,
∵△FEO∽△AED,
∴,
解得:FO=,
∴FG=2FO=.
故折痕FG的長是.
科目:初中數學 來源: 題型:
【題目】閱讀小強同學數學作業(yè)本上的截圖內容并完成任務:
解方程組
解:由①,得,③ 第一步
把③代入①,得.第二步
整理得,.第三步
因為可以取任意實數,所以原方程組有無數個解 第四步
任務:(1)這種解方程組的方法稱為 ;
(2)利用此方法解方程組的過程中所體現(xiàn)的數學思想是 ;(請你填寫正確選項)
A.轉化思想 B.函數思想 C.數形結合思想 D.公理化思想
(3)小強的解法正確嗎? (填正確或不正確),如果不正確,請指出錯在第 步,請選擇恰當的解方程組的方法解該方程組.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小敏同學測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達點F處測得樓頂C的仰角為45°(B,F,D在同一條直線上)。一直小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數據: ≈1.732, ≈1.414,結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場正在熱銷2008年北京奧運會吉祥物“福娃”玩具和徽章兩種奧運商品,5個福娃2枚徽章145元,10個福娃3枚徽章280元(5個福娃為1套),則:
(1)一套“福娃”玩具和一枚徽章的價格各是多少元?
(2)買5套“福娃”玩具和10枚徽章共需要多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線 :y=2x+1與直線 :y=mx+4相交于點P(1,b)
(1)求b,m的值
(2)垂直于x軸的直線 x=a與直線 ,分別相交于C,D,若線段CD長為2,求a的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我校的北大門是由相同菱形框架組成的伸縮電動推拉門,如圖是大門關閉時的示意圖,此時 菱形的邊長為0.5m,銳角都是50°.求大門的寬(結果精確到0.01,參考數據:sin25°≈0.422 6,cos25°≈0.906 3).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】填空,完成下列說理過程
如圖,已知點A,O,B在同一條直線上,OE平分∠BOC,∠DOE=90°
求證:OD是∠AOC的平分線;
證明:如圖,因為OE是∠BOC的平分線,
所以∠BOE=∠COE.( 。
因為∠DOE=90°
所以∠DOC+∠ =90°
且∠DOA+∠BOE=180°﹣∠DOE= °.
所以∠DOC+∠ =∠DOA+∠BOE.
所以∠ 。健稀 。
所以OD是∠AOC的平分線.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com