為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
(1)政府這個(gè)月為他承擔(dān)的總差價(jià)為600元;(2)當(dāng)銷售單價(jià)定為30元時(shí),每月可獲得最大利潤(rùn)4000;(3)銷售單價(jià)定為25元時(shí),政府每個(gè)月為他承擔(dān)的總差價(jià)最少為500元.
解析試題分析:(1)根據(jù)每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系可求得每月銷售量,又由單價(jià)和成本間關(guān)系得到每件節(jié)能燈的差價(jià),則可得到總差價(jià).(2)求每月可獲得最大利潤(rùn),即為求該二次函數(shù)的最大值,將二次函數(shù)配方法,可得該函數(shù)的最大值.(3)同時(shí)滿足,根據(jù)函數(shù)圖象的性質(zhì)知道,隨的增大而減小,當(dāng)時(shí),該函數(shù)有最大值時(shí),有最小值500.
試題解析:(1)當(dāng)時(shí),,,
∴政府這個(gè)月為他承擔(dān)的總差價(jià)為600元。
(2)依題意得,,
,
∴當(dāng)時(shí),有最大值4000.
∴當(dāng)銷售單價(jià)定為30元時(shí),每月可獲得最大利潤(rùn)4000.
(3)由題意得:,
解得:,.
,拋物線開(kāi)口向下,
∴結(jié)合圖象可知:當(dāng)時(shí),.
又,∴當(dāng)時(shí),w≥3000.
設(shè)政府每個(gè)月為他承擔(dān)的總差價(jià)為元,.
,隨的增大而減小.
∴當(dāng)時(shí),有最小值500.
∴銷售單價(jià)定為25元時(shí),政府每個(gè)月為他承擔(dān)的總差價(jià)最少為500元.
【考點(diǎn)】1.二次函數(shù)的性質(zhì);2.二次函數(shù)的圖象;3.二次函數(shù)的綜合應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與直線交于C,D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為。點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作軸于點(diǎn)E,交CD于點(diǎn)F.
(1)求拋物線的解析式;
(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè),C,P,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說(shuō)明理由。
(3)若存在點(diǎn)P,使,請(qǐng)直接寫出相應(yīng)的點(diǎn)P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線與直線交于點(diǎn)O(0,0),A(,12),點(diǎn)B是拋物線上O,A之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B分別作軸、軸的平行線與直線OA交于點(diǎn)C,E.
(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長(zhǎng);
(3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(,),求出,之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點(diǎn)P由B出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),求S與t的函數(shù)關(guān)系式
(3)是否存在某時(shí)刻t,使四邊形BPQC的面積為△ABC面積的三分之二?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(,0),連結(jié)OA,將線段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線段OB.
(1)請(qǐng)直接寫出點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線的解析式;
(3)如果點(diǎn)P是(2)中的拋物線上的動(dòng)點(diǎn),且在x軸的上方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長(zhǎng)分別為m、4m(m>0),D為邊AB的中點(diǎn),一拋物線l經(jīng)過(guò)點(diǎn)A、D及點(diǎn)M(﹣1,﹣1﹣m).
(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點(diǎn)A落在點(diǎn)A′處,連接OA′并延長(zhǎng)與線段BC的延長(zhǎng)線交于點(diǎn)E,若拋物線l與線段CE相交,求實(shí)數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線與x軸交于點(diǎn)A(1,0),B(3,0),且過(guò)點(diǎn)C(0,﹣3).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在直線y=﹣x上,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com