【題目】ABC中,CA=CB,CD是中線,AEBC于E交CD于F,求證:①CBD∽△AFD,②DE2=DFDC.

【答案】見解析

【解析】

試題分析:(1)利用DAF=DCB和ADF=CDB,即可得出ADE∽△FDB;

(2)由ADF∽△CDB,可得=,再由DE是RtABE斜邊上的中線,得出DA=DB=DE,即可得出DE2=DCDF.

解:(1)∵△ABC中,CA=CB,CD是中線,

CDAB,

∴∠ADF=CDB=90°,

AEBC,ABE=CBD,

∴∠DAF=DCB,

∴△CBD∽△AFD;

(2)∵△ADF∽△CDB,

=,即DBDA=DFDC,

DE是RtABE斜邊上的中線,

DA=DB=DE,

DE2=DCDF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)發(fā)現(xiàn)自己的一本書的寬與長之比為黃金比.已知這本書的長為20cm,則它的寬約為( )

A.12.36cmB.13.6cmC.32.36cmD.7.64cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)多邊形的內(nèi)角和是1080度,則這個(gè)多邊形的邊數(shù)為(  )

A. 6 B. 7 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,再回答問題:

要比較代數(shù)式AB的大小,可以作差A-B,比較差的取值,當(dāng)A-B>0時(shí),有A>B;當(dāng)A-B=0時(shí),有A=B;當(dāng)A-B<0時(shí),有A<B.”例如,當(dāng)a<0時(shí),比較的大小.可以觀察因?yàn)楫?dāng)a<0時(shí),-a>0,所以當(dāng)a<0時(shí), .
(1)已知M=,比較M、N的大小關(guān)系.

(2)某種產(chǎn)品的原料提價(jià),因而廠家決定對(duì)于產(chǎn)品進(jìn)行提價(jià),現(xiàn)有三種方案:

方案1:第一次提價(jià)p%,第二次提價(jià)q%;

方案2:第一次提價(jià)q%,第二次提價(jià)p%;

方案3:第一、二次提價(jià)均為

如果設(shè)原價(jià)為a元,請(qǐng)用含ap、q的式子表示提價(jià)后三種方案的價(jià)格.

方案1: ;方案2: ;方案3:_______

如果p,q是不相等的正數(shù),三種方案哪種提價(jià)最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若ABCD的三條邊分別為8cm,(x﹣2)cm,(x+3)cm,則該ABCD的周長是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場的年銷售額為x萬元,成本為銷售額的55%,稅額和其他費(fèi)用為銷售額的y%。

(1)用關(guān)于x,y的代數(shù)式表示公司的年利潤。

(2)若x=200,y=5,求該商場的年利潤為多少萬元?

(溫馨提示:利潤=銷售額-成本-稅額和其他費(fèi)用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的多項(xiàng)式x2﹣kx+9是一個(gè)完全平方式,那么k=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:|a﹣1|+|b+2|=0,求2a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是( )

A.有兩條邊相等的兩個(gè)等腰三角形全等

B.兩腰對(duì)應(yīng)相等的兩個(gè)等腰三角形全等

C.兩角對(duì)應(yīng)相等的兩個(gè)等腰三角形全等

D.一邊對(duì)應(yīng)相等的兩個(gè)等邊三角形全等

查看答案和解析>>

同步練習(xí)冊(cè)答案