【題目】1是我校聞瀾閣前樓梯原設計稿的側面圖,,,樓梯的坡比為1,為了增加樓梯的舒適度,將其改造成如圖2,測量得,的中點,過點分別作的角平分線于點,于點,其中為樓梯,為平地,則平地的長度為_________

【答案】

【解析】

首先根據(jù)坡比求出AEBE,然后由勾股定理得出BC,進而得出AD,再由角平分線、中點以及平行的性質(zhì)得出AH=HPDP=HP,判定△MDP≌△BMN,得出MN=DP,即可得解.

延長BNADH,AE⊥BC,BCE,連接AM,如圖所示:

∵樓梯的坡比為1,

AB=9,AE=CD=3,BE=

AD=CE=BC-BE=

的中點

BM=MD=AB=9

的角平分線于點

BH垂直平分AM,MDP=BMN

AH=HP,DMP=MBN

∴△MDP≌△BMN(ASA)

MN=DP

,的中點

DP=HP

故答案為: .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了做好“營造清潔生活環(huán)境”活動的宣傳,對本校學生進行了有關知識的測試,測試后隨機抽取了部分學生的測試成績,按“優(yōu)秀、良好、及格、不及格”四個等級進行統(tǒng)計分析,并將分析結果繪制成如下兩幅不完整的統(tǒng)計圖:

1)求抽取的學生總人數(shù);

2)抽取的學生中,等級為優(yōu)秀的人數(shù)為   人;扇形統(tǒng)計圖中等級為“不合格”部分的圓心角的度數(shù)為   °

3)補全條形統(tǒng)計圖;

4)若該校有學生3500人,請根據(jù)以上統(tǒng)計結果估計成績等級為“優(yōu)秀”和“良好”的學生共有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(11)關于直線y =kx的對稱點恰好落在x軸的正半軸上,則k的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,EBC上一點,連接DE,點F在邊CD上,且AFCDDE于點G,連接CG.已知∠DEC45°,GCBC

1)若∠DCG30°,CD4,求AC的長.

2)求證:ADCG+DG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本,已知:兩種筆記本的進價之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學買4本甲種筆記本和3本乙種筆記本共用了47元.

(1)甲、乙兩種筆記本的進價分別是多少元?

(2)該文具店購入這兩種筆記本共60本,花費不超過296元,則購買甲種筆記本多少本時文具店獲利最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了增加學校綠化,學校計劃建造一塊長為的正方形花壇,分別取四邊中點,構成四邊形,并計劃用兩花一草來裝飾,四邊形部分使用甲種花,在正方形四個角落構造4個全等的矩形區(qū)域種植乙種花,剩余部分種草坪,圖紙設計如下.

1)經(jīng)了解,種植甲種花50/,乙種花80/,草坪10/,設一個矩形的面積為,裝飾總費用為元,求關于的函數(shù)關系式.

2)當裝飾費用為74880元時,則一個矩形區(qū)域的長和寬分別為多少?

3)為了縮減開支,甲區(qū)域用單價為40/的花,乙區(qū)域用單價為/ (,且10的倍數(shù))的花,草坪單價不變,最后裝飾費只用了55000元,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,點DAB的中點,ACBC

(1)試用無刻度的直尺和圓規(guī),在BC上作一點E,使得直線ED平分ABC的周長;(不要求寫作法,但要保留作圖痕跡)

(2)(1)的條件下,若DERtABC面積為12兩部分,請?zhí)骄?/span>ACBC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解

如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,軸的垂線,垂足為,交反比例函數(shù)的圖象于點.點,,的橫坐標分別為,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結論:AE+BG=2CF,CF>DF,由此得出一個關于,之間數(shù)量關系的命題:若,則______

(2)證明命題

小東認為:可以通過,則的思路證明上述命題.

小晴認為:可以通過,,且,則的思路證明上述命題.

請你選擇一種方法證明(1)中的命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一座隧道的截面由拋物線和長方形構成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標系:

1)求拋物線的解析式;

2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?

3)如果隧道內(nèi)設雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

同步練習冊答案