(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點(diǎn)A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點(diǎn)在拋物線y=x2上,DC交y軸于N點(diǎn),一條直線OE與AB交于E點(diǎn),與DC交于F點(diǎn),如果E點(diǎn)的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點(diǎn)的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點(diǎn)分別為M,K,H,求tan∠PFM的值.

【答案】分析:(1)已知了拋物線的解析式,而B(niǎo)的縱坐標(biāo)就是A點(diǎn)的縱坐標(biāo),可代入拋物線的解析式中即可求出B點(diǎn)的坐標(biāo),也就知道了AB的長(zhǎng),由于四邊形ABCD是平行四邊形,因此AB=CD,根據(jù)拋物線的對(duì)稱性,即可求出D點(diǎn)的橫坐標(biāo).然后代入拋物線的解析式中即可得出D點(diǎn)的坐標(biāo);
(2)先根據(jù)E點(diǎn)坐標(biāo)表示出直線上OE的解析式,進(jìn)而求出F點(diǎn)的坐標(biāo).在梯形ADFE中,上下底的長(zhǎng)就可求出,高是AN即A、D兩點(diǎn)縱坐標(biāo)的差,然后可根據(jù)梯形ADFE的面積求出a的值.
(3)求∠PFM的正切值,就要構(gòu)建直角三角形,連接PM,PK,直角三角形PMN中,已知了FN的長(zhǎng)(根據(jù)F點(diǎn)坐標(biāo)可求得),而MN=PM=r,因此求出圓P的半徑是關(guān)鍵.△ADN中,根據(jù)A、D兩點(diǎn)的坐標(biāo)即可求出AD、AN、DN的長(zhǎng).由于圓P內(nèi)切于△ADN,因此可根據(jù)三角形內(nèi)切圓半徑公式求出圓P的半徑.進(jìn)而可在直角三角形PMF中,根據(jù)tan∠PFM=r:(r+FN)求出∠PFM的正切值.
解答:解:(1)∵點(diǎn)A的坐標(biāo)為(0,16),且AB∥x軸
∴B點(diǎn)縱坐標(biāo)為16,且B點(diǎn)在拋物線y=x2
∴點(diǎn)B的坐標(biāo)為(10,16)
又∵點(diǎn)D、C在拋物線y=x2上,且CD∥x軸
∴D、C兩點(diǎn)關(guān)于y軸對(duì)稱
∴DN=CN=5
∴D點(diǎn)的坐標(biāo)為(-5,4).

(2)設(shè)E點(diǎn)的坐標(biāo)為(a,16),則直線OE的解析式為:
∴F點(diǎn)的坐標(biāo)為(
由AE=a,DF=且S梯形ADFE=,
解得a=5.

(3)連接PH,PM,PK
∵⊙P是△AND的內(nèi)切圓,H,M,K為切點(diǎn)
∴PH⊥AD PM⊥DN PK⊥AN
在Rt△AND中,由DN=5,AN=12,得AD=13
設(shè)⊙P的半徑為r,則S△AND=(5+12+13)r=×5×12,r=2
在正方形PMNK中,PM=MN=2
∴MF=MN+NF=2+=
在Rt△PMF中,tan∠PFM=
點(diǎn)評(píng):本題考查了三角形的內(nèi)切圓,解直角三角形,平行四邊形的性質(zhì),二次函數(shù)的性質(zhì)等知識(shí)點(diǎn),綜合性較強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點(diǎn)A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點(diǎn)在拋物線y=x2上,DC交y軸于N點(diǎn),一條直線OE與AB交于E點(diǎn),與DC交于F點(diǎn),如果E點(diǎn)的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點(diǎn)的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點(diǎn)分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年陜西省中考模擬數(shù)學(xué)試卷(4)(金臺(tái)中學(xué) 楊宏舉)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點(diǎn)A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點(diǎn)在拋物線y=x2上,DC交y軸于N點(diǎn),一條直線OE與AB交于E點(diǎn),與DC交于F點(diǎn),如果E點(diǎn)的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點(diǎn)的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點(diǎn)分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省無(wú)錫市宜興市初三數(shù)學(xué)適應(yīng)性練習(xí)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點(diǎn)A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點(diǎn)在拋物線y=x2上,DC交y軸于N點(diǎn),一條直線OE與AB交于E點(diǎn),與DC交于F點(diǎn),如果E點(diǎn)的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點(diǎn)的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點(diǎn)分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年黑龍江省綏化市中考數(shù)學(xué)預(yù)測(cè)試卷(3)(解析版) 題型:解答題

(2007•內(nèi)江)如圖,已知平行四邊形ABCD的頂點(diǎn)A的坐標(biāo)是(0,16),AB平行于x軸,B,C,D三點(diǎn)在拋物線y=x2上,DC交y軸于N點(diǎn),一條直線OE與AB交于E點(diǎn),與DC交于F點(diǎn),如果E點(diǎn)的橫坐標(biāo)為a,四邊形ADFE的面積為
(1)求出B,D兩點(diǎn)的坐標(biāo);
(2)求a的值;
(3)作△ADN的內(nèi)切圓⊙P,切點(diǎn)分別為M,K,H,求tan∠PFM的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案