【題目】如圖,平行四邊形ABCD的對角線AC、BD相較于點O,EF過點O,且與AD、BC分別相交于E、F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長是( )
A.16B.14C.12D.10
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當y>0時,x的取值范圍是﹣1<x<3;⑤當x>0時,y隨x增大而減。渲薪Y(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O交CA于點E,點G是AD的中點.
(1)求證:GE是⊙O的切線;
(2)若AC⊥BC,且AC=8,BC=6,求切線GE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市居民用電的電價實行階梯收費,收費標準如下表:
一戶居民每月用電量x(單位:度) | 電費價格(單位:元/度) |
0<x≤200 | 0.48 |
200<x≤400 | 0.53 |
x>400 | 0.78 |
七月份是用電高峰期,李叔計劃七月份電費支出不超過200元,直接寫出李叔家七月份最多可用電的度數(shù)是( )
A. 100B. 396C. 397D. 400
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】詩詞是我國古代文化中的瑰寶,某市教育主管部門為了解本市初中生對詩詞的學習情況,舉辦了一次“中華詩詞”背誦大賽,隨機抽取了部分同學的成績(x為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計圖表.
組別 | 成績分組(單位:分) | 頻數(shù) |
A | 50≤x<60 | 40 |
B | 60≤x<70 | a |
C | 70≤x<80 | 90 |
D | 80≤x<90 | b |
E | 90≤x<100 | 100 |
合計 | c |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計表中a= ,b= ,c= ;
(2)扇形統(tǒng)計圖中,m的值為 ,“E”所對應(yīng)的圓心角的度數(shù)是 (度);
(3)若參加本次大賽的同學共有4000人,請你估計成績在80分及以上的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=100°,∠BCD=70°,點M,N分別在AB,BC上,將△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD是等腰△ABC底邊BC上的中線,BC=6cm,AD=9cm,點E、F是AD的三等分點,則陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
《張丘建算經(jīng)》是一部數(shù)學問題集,其內(nèi)容、范圍與《九章算術(shù)》相仿.其中提出并解決了一個在數(shù)學史上非常著名的不定方程問題,通常稱為“百雞問題”:“今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一,凡百錢買雞百只,問雞翁、母、雛各幾何.”
譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢,現(xiàn)在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?結(jié)合你學過的知識,解決下列問題:
(1)若設(shè)公雞有x只,母雞有y只,
①則小雞有______只,買小雞一共花費______文錢;(用含x,y的式子表示)
②根據(jù)題意列出一個含有x,y的方程:______;
(2)若對“百雞問題”增加一個條件:公雞數(shù)量是母雞數(shù)量的3倍,求此時公雞、母雞、小雞各有多少只?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,點E在線段AB上以lcms的速度由點A向點B運動,與此同時點F在線段BC上由點B向點C運動,設(shè)運動的時間均為ts.
(1)若點F的運動速度與點E的運動速度相等,當t=2時:
①判斷△BEF與△ADE是否全等?并說明理由;
②求∠EDF的度數(shù).
(2)如圖2,將圖1中的“長方形ABCD”改為“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他條件不變.設(shè)點F的運動速度為xcm/s.是否存在x的值,使得△BEF與△ADE全等?若存在,直接寫出相應(yīng)的x及t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com