【題目】在直角三角形中,其中一個(gè)銳角是另一個(gè)銳角的2倍,則此三角形中最小的角是( 。
A.15°
B.30°
C.60°
D.90°

【答案】B
【解析】設(shè)較小的銳角是x , 則另一個(gè)銳角是2x
由題意得,x+2x=90°,
解得x=30°,
即此三角形中最小的角是30°.
故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P在第二象限,若該點(diǎn)到x軸的距離為3,到y(tǒng)軸的距離為1,則點(diǎn)P的坐標(biāo)是(
A.(﹣1,3)
B.(﹣3,1)
C.(3,﹣1)
D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組 的解為正數(shù).
(1)求a的取值范圍;
(2)化簡(jiǎn)|﹣4a+5|﹣|a+4|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個(gè)數(shù)為( )

過一點(diǎn)有無數(shù)條直線與已知直線平行;

經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行;

如果兩條線段不相交,那么它們就平行;

如果兩條直線不相交,那么它們就平行.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是反比例函數(shù)y= 的圖象的一支.根據(jù)給出的圖象回答下列問題:
(1)該函數(shù)的圖象位于哪幾個(gè)象限?請(qǐng)確定m的取值范圍
(2)在這個(gè)函數(shù)圖象的某一支上取點(diǎn)Ax1y1)、Bx2y2).如果y1y2 , 那么x1x2有怎樣的大小關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象的一支位于第一象限.
(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱,若△OAB的面積為6,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列推理說明:
(1)如圖1,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下: 因?yàn)椤?=∠2(已知),且∠1=∠4(
所以∠2=∠4(等量代換)
所以CE∥BF(
所以∠=∠3(
又因?yàn)椤螧=∠C(已知)
所以∠3=∠B(等量代換)
所以AB∥CD(
(2)如圖2,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE. 證明:∵∠B+∠BCD=180°(已知),
∴AB∥CD (
∴∠B=
又∵∠B=∠D(已知),
∴∠=∠(等量代換)
∴AD∥BE(
∴∠E=∠DFE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某直角三角形三條邊的平方和為200,則這個(gè)直角三角形的斜邊長(zhǎng)為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)三角形的最大角不會(huì)小于_____度.

查看答案和解析>>

同步練習(xí)冊(cè)答案