如圖,已知拋物線的圖象,將其向右平移兩個單位后得到圖象

(1)求圖象所表示的拋物線的解析式:

(2)設(shè)拋物線軸相交于點、點(點位于點的右側(cè)),頂點為點,點位于軸負(fù)半軸上,且到軸的距離等于點軸的距離的2倍,求所在直線的解析式.

 

【答案】

見解析.

【解析】

試題分析:(1)將拋物線y=﹣2x2﹣4x=﹣2(x+1)2+2的圖象E,向右平移兩個單位后得到圖象F,

根據(jù)“左加又減,上加下減”規(guī)律,所以,圖象F所表示的拋物線的解析式為y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;

(2)由拋物線y=﹣2(x﹣1)2+2,求出頂點C的坐標(biāo)為(1,2).

令y=0得,﹣2(x﹣1)2+2=0,解得x=0或2,點B的坐標(biāo)為(2,0).點位于軸負(fù)半軸上,所以,設(shè)A點坐標(biāo)為(0,y),則y<0.又因為點A到x軸的距離等于點C到x軸的距離的2倍,即﹣y=2×2,解得y=﹣4,

所以,A點坐標(biāo)為(0,﹣4).設(shè)AB所在直線的解析式為y=kx+b,把A(0,﹣4),B(2,0)的坐標(biāo)代入,

解得,寫出AB所在直線的解析式為y=2x﹣4.

試題解析:

(1)∵拋物線y=﹣2x2﹣4x=﹣2(x+1)2+2的圖象E,將其向右平移兩個單位后得到圖象F,

∴圖象F所表示的拋物線的解析式為y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;

(2)∵y=﹣2(x﹣1)2+2,

∴頂點C的坐標(biāo)為(1,2).

當(dāng)y=0時,﹣2(x﹣1)2+2=0,

解得x=0或2,

∴點B的坐標(biāo)為(2,0).

設(shè)A點坐標(biāo)為(0,y),則y<0.

∵點A到x軸的距離等于點C到x軸的距離的2倍,

∴﹣y=2×2,解得y=﹣4,

∴A點坐標(biāo)為(0,﹣4).設(shè)AB所在直線的解析式為y=kx+b,

由題意,得,

解得,

∴AB所在直線的解析式為y=2x﹣4.

考點:1.待定系數(shù)法求直線的解析式。2. 拋物線的圖象和性質(zhì)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標(biāo)原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃岡)如圖,已知拋物線的方程C1:y=-
1m
(x+2)(x-m)(m>0)與x軸相交于點B、C,與y軸相交于點E,且點B在點C的左側(cè).
(1)若拋物線C1過點M(2,2),求實數(shù)m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)條件下,在拋物線的對稱軸上找一點H,使BH+EH最小,并求出點H的坐標(biāo);
(4)在第四象限內(nèi),拋物線C1上是否存在點F,使得以點B、C、F為頂點的三角形與△BCE相似?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•道外區(qū)三模)如圖,已知拋物線y=ax2+bx+c過點A(-1,0)、B(3,0)、C(0,3)
(1)求此拋物線的解析式.
(2)設(shè)拋物線的頂點為D,連接CD、BD,求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2-4x+c經(jīng)過點A(0,-6)和B(3,-9).
(1)求出拋物線的解析式;寫出拋物線的對稱軸方程及頂點坐標(biāo);
(2)拋物線與x軸交于C、D兩點,在拋物線上能否找一點N使三角形CDN的面積是三角形CDA的1.5倍?若存在求出N點坐標(biāo),不存在說明理由;
(3)若點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關(guān)于拋物線的對稱軸對稱.在拋物線的對稱軸上尋找一點M,使得△QMA的周長最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湘西自治州初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試題 題型:044

如圖,已知拋物線y=ax2-4x+c經(jīng)過點A(0,-6)和B(3,-9),

(1)求出拋物線的解析式;

(2)寫出拋物線的對稱軸方程及頂點坐標(biāo);

(3)點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關(guān)于拋物線的對稱軸,對稱,求m的值及點Q的坐標(biāo);

(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點M,使得△QMA的周長最。

查看答案和解析>>

同步練習(xí)冊答案