【題目】(10分) 如圖所示,求∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
【答案】360°.
【解析】試題分析:連接BE,根據(jù)三角形外角的性質(zhì)可得∠1=∠C+∠D=∠CBE+∠DEB,再由四邊形的內(nèi)角和定理可得∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F=∠A+∠ABE+∠BEF+∠F=360°.
試題解析:解:如圖,連接BE.
∵∠1=∠C+∠D,∠1=∠CBE+∠DEB,
∴∠C+∠D=∠CBE+∠DEB,
∴∠A+∠ABC+∠C+∠D+∠DEF+∠F
=∠A+∠ABC+∠CBE+∠DEB+∠DEF+∠F
=∠A+∠ABE+∠BEF+∠F.
又∵∠A+∠ABE+∠BEF+∠F=360°,
∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=360°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情景:
如圖1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:
過點P作PE//AB,
∴∠PAB+∠APE=180°.
∵∠PAB=130°,∴∠APE=50°
∵AB//CD,PE//AB,∴PE//CD,
∴∠PCD+∠CPE=180°.
∵∠PCD=120°,∴∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.
問題遷移:
如果AB與CD平行關(guān)系不變,動點P在直線AB、CD所夾區(qū)域內(nèi)部運動時,∠PAB,∠PCD的度數(shù)會跟著發(fā)生變化.
(1)如圖3,當(dāng)動點P運動到直線AC右側(cè)時,請寫出∠PAB,∠PCD和∠APC之間的數(shù)量關(guān)系?并說明理由.
(2)如圖4,AQ,CQ分別平分∠PAB,∠PCD,那么∠AQC和角∠APC有怎擇的數(shù)量關(guān)系?
(3)如圖5,點P在直線AC的左側(cè)時,AQ,CQ仍然平分∠PAB,∠PCD,請直接寫出∠AQC和角∠APC的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,命題有_______個.
①對頂角相等;②內(nèi)錯角相等;③∠1>∠2嗎?④若a∥b,b∥c,則a∥c;⑤兩點確定一條直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織九年級學(xué)生參加漢字聽寫大賽,并隨機(jī)抽取部分學(xué)生成績作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計表:
請根據(jù)所給信息,解答下列問題:
(1)a=__________,b=__________;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)已知該年級有400名學(xué)生參加這次比賽,若成績在90分以上(含90分)的為優(yōu),估計該年級成績?yōu)閮?yōu)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,飛機(jī)沿水平方向(A、B兩點所在直線)飛行,前方有一座高山,為了避免飛機(jī)飛行過低.就必須測量山頂M到飛行路線AB的距離MN.飛機(jī)能夠測量的數(shù)據(jù)有俯角和飛行距離 (因安全因素,飛機(jī)不能飛到山頂?shù)恼戏絅處才測飛行距離),請設(shè)計一個求距離MN的方案,要求:
(1)指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);
(2)用測出的數(shù)據(jù)寫出求距離MN的步驟.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y1=k1x與反比例函數(shù)y2= 相交于A、B點.已知點A的坐標(biāo)為A(4,n),BD⊥x軸于點D,且S△BDO=4.過點A的一次函數(shù)y3=k3x+b與反比例函數(shù)的圖象交于另一點C,與x軸交于點E(5,0).
(1)求正比例函數(shù)y1、反比例函數(shù)y2和一次函數(shù)y3的解析式;
(2)結(jié)合圖象,求出當(dāng)k3x+b> >k1x時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心為直角的扇形紙板的圓心放在O點處,并將紙板的圓心繞O旋轉(zhuǎn),則正方形ABCD被紙板覆蓋部分的面積為( 。
A. a2 B. a2 C. a2 D. a
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com