【題目】閱讀下面的材料:

如圖①,在△ABC中,試說明∠A+∠B+∠C=180°.

分析:通過畫平行線,將∠A、∠B、∠C作等量代換,使各角之和恰為一個(gè)平角,依輔助線不同而得多種方法.

【答案】見解析

【解析】

試題(1)根據(jù)平行線的性質(zhì)進(jìn)行證明即可;
(2)根據(jù)兩直線平行,同位角相等可得根據(jù)同角的補(bǔ)角相等得到從而得證.

試題解析:證法1:如圖2,延長BCD,過點(diǎn)CCEBA,

BACE,

∴∠B=2(兩直線平行,同位角相等),

A=1(兩直線平行,內(nèi)錯(cuò)角相等).

又∵,

.

證法2:如圖3,過線段BC上任一點(diǎn)F(點(diǎn)B.C除外),FHAC,FGAB,

HFAC,

∴∠1=C

GFAB,

∴∠B=3,

∴∠2=A,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段MN=8,C是線段MN上一動(dòng)點(diǎn),在MN的同側(cè)分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點(diǎn)H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過點(diǎn)D、E分別作線段MN的垂線,垂足分別為F、G,問:在點(diǎn)C運(yùn)動(dòng)過程中,DF+EG的長度是否為定值,如果是,請求出這個(gè)定值,如果不是請說明理由;

(3)當(dāng)點(diǎn)C由點(diǎn)M移到點(diǎn)N時(shí),點(diǎn)H移到的路徑長度為(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點(diǎn)A,O,B分別表示-16,0,14,點(diǎn)P,Q分別從點(diǎn)A,B同時(shí)開始沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位,點(diǎn)Q的速度是每秒1個(gè)單位,運(yùn)動(dòng)時(shí)間為t秒.若點(diǎn)P,Q,O三點(diǎn)在運(yùn)動(dòng)過程中,其中一點(diǎn)恰好是另外兩點(diǎn)為端點(diǎn)構(gòu)成的線段的三等分點(diǎn)時(shí),則運(yùn)動(dòng)時(shí)間為_秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.

(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿CA方向運(yùn)動(dòng),速度是2cm/s,動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC方向運(yùn)動(dòng),速度是1cm/s.

(1)幾秒后P,Q兩點(diǎn)相距25cm?
(2)幾秒后△PCQ與△ABC相似?
(3)設(shè)△CPQ的面積為S1 , △ABC的面積為S2 , 在運(yùn)動(dòng)過程中是否存在某一時(shí)刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是雙曲線y= 在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊做等腰直角△ABC,點(diǎn)C在第四象限.隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線y= (k<0)上運(yùn)動(dòng),則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AE于點(diǎn)E.

(1)求證:△BEF∽△DBC.;
(2)若⊙O的半徑為3,∠C=32°,求BE的長.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,點(diǎn)E是CD上的一個(gè)動(dòng)點(diǎn)(E不與D重合),過點(diǎn)E作EF∥AC,交AD于點(diǎn)F(當(dāng)E運(yùn)動(dòng)到C時(shí),EF與AC重合),把△DEF沿著EF對(duì)折,點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)G.設(shè)DE=x,△GEF與四邊形ABCD重疊部分的面積為y.

(1)求CD的長及∠1的度數(shù);
(2)若點(diǎn)G恰好在BC上,求此時(shí)x的值;
(3)求y與x之間的函數(shù)關(guān)系式,并求x為何值時(shí),y的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,BC=12,B=30°,AB的垂直平分線DEBC邊于點(diǎn)E,AC的垂直平分線MNBC于點(diǎn)N.

(1)求AEN的周長;

(2)求證:BE=EN=NC.

查看答案和解析>>

同步練習(xí)冊答案