如圖,AB是⊙O的直徑,點(diǎn)C在BA的延長(zhǎng)線上,直線CD與⊙O相切于點(diǎn)D,弦DF⊥AB于點(diǎn)E,線段CD=10,連接BD.
(1)求證:∠CDE=2∠B;
(2)若BD:AB=:2,求⊙O的半徑及DF的長(zhǎng).

【答案】分析:(1)連接OD,根據(jù)弦切角定理得∠CDE=∠EOD,再由同弧所對(duì)的圓心角是圓周角的2倍,可得∠CDE=2∠B;
(2)連接AD,根據(jù)三角函數(shù),求得∠B=30°,則∠EOD=60°,推得∠C=30°,根據(jù)∠C的正切值,求出圓的半徑,再在Rt△CDE中,利用∠C的正弦值,求得DE,從而得出DF的長(zhǎng).
解答:(1)證明:連接OD.
∵直線CD與⊙O相切于點(diǎn)D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°. (2分)
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD.                       (3分)
又∵∠EOD=2∠B,
∴∠CDE=2∠B.                       (4分)

(2)解:連接AD.
∵AB是⊙O的直徑,
∴∠ADB=90°.                         (5分)
∵BD:AB=,
,
∴∠B=30°.                          (6分)
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°.                          (7分)
在Rt△CDO中,CD=10,
∴OD=10tan30°=,
即⊙O的半徑為.                 (8分)
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5.                    (9分)
∵DF⊥AB于點(diǎn)E,
∴DE=EF=DF.
∴DF=2DE=10.                        (10分)
點(diǎn)評(píng):本題考查的是切割線定理,切線的性質(zhì)定理,勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長(zhǎng)線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長(zhǎng)度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案