當(dāng)m為何值時(shí),4a2m-1•b+a2b-5是四次多項(xiàng)式?
分析:根據(jù)多項(xiàng)式次數(shù)的定義求解.多項(xiàng)式的次數(shù)是多項(xiàng)式中最高次項(xiàng)的次數(shù),即可得到關(guān)于m的方程,從而求解.
解答:解:根據(jù)題意得:2m-1+1=4,
解得:m=2,
即當(dāng)m=2時(shí),4a2m-1•b+a2b-5是四次多項(xiàng)式.
點(diǎn)評(píng):此題考查的是多項(xiàng)式的定義,多項(xiàng)式中每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),這些單項(xiàng)式中的最高次數(shù),就是這個(gè)多項(xiàng)式的次數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省張家港市塘橋初級(jí)中學(xué)初三第一學(xué)期調(diào)研試卷數(shù)學(xué)試卷(帶解析) 題型:解答題

已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個(gè)實(shí)數(shù)根x1,x2.(1)當(dāng)a為何值時(shí),x1≠x2;(2)是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說(shuō)明理由.
解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<
∴當(dāng)a<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)存在,如果方程的兩個(gè)實(shí)數(shù)根x1,x2互為相反數(shù),則x1+x2=-=0①,
解得a=,經(jīng)檢驗(yàn),a=是方程①的根.
∴當(dāng)a=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).
上述解答過(guò)程是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省張家港市初三第一學(xué)期調(diào)研試卷數(shù)學(xué)試卷(解析版) 題型:解答題

已知關(guān)于x的方程a2x2+(2a-1)x+1=0有兩個(gè)實(shí)數(shù)根x1,x2.(1)當(dāng)a為何值時(shí),x1≠x2;(2)是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說(shuō)明理由.

解:(1)根據(jù)題意,得△=(2a-1)2-4a2>0,解得a<

∴當(dāng)a<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)存在,如果方程的兩個(gè)實(shí)數(shù)根x1,x2互為相反數(shù),則x1+x2=-=0①,

解得a=,經(jīng)檢驗(yàn),a=是方程①的根.

∴當(dāng)a=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).

上述解答過(guò)程是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并解答.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案