【題目】如圖,CD⊥AB,BE⊥AC,垂足分別為D,E,BE,CD相交于點O,如果AB=AC,那么圖中全等的三角形有( 。
A. 2對 B. 3對 C. 4對 D. 5對
【答案】C
【解析】
共有四對.分別為△ADO≌△AEO,△ADC≌△AEB,△ABO≌△ACO,△BOD≌△COE.做題時要從已知條件開始結合圖形利用全等的判定方法由易到難逐個尋找.
:
∵CD⊥AB,BE⊥AC,AO平分∠BAC
∴∠ADO=∠AEO=90,∠DAO=∠EAO,
∵在△ADO和△AEO中
,
∴△ADO≌△AEO(AAS);
∴OD=OE,AD=AE
∵在△BOD和△COE中
,∴△BOD≌△COE(ASA);
∴BD=CE,OB=OC,∠B=∠C,
在△ADC和△AEB中
,
∴△ADC≌△AEB(ASA);
在△ABO和△ACO中
,
∴△ABO≌△ACO(SSS).
所以共有四對全等三角形。
故答案選:C.
科目:初中數(shù)學 來源: 題型:
【題目】仔細閱讀下列材料.
“分數(shù)均可化為有限小數(shù)或無限循環(huán)小數(shù)”,反之,“有限小數(shù)或無限小數(shù)均可化為分數(shù)”.
例如:=1÷4=0.25;==8÷5=1.6;=1÷3=,反之,0.25== ;1.6===.那么,怎么化成分數(shù)呢?
解:∵×10=3+, ∴不妨設=x,則上式變?yōu)?/span>10x=3+x,解得x=,即=;
∵=,設=x,則上式變?yōu)?/span>100x=2+x,解得x=,
∴==1+x=1+=
⑴將分數(shù)化為小數(shù):=______,=_______;
⑵將小數(shù)化為分數(shù):=______,=_______;
⑶將小數(shù)化為分數(shù),需要寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)的頂點坐標為點A(﹣2,3),且拋物線y=ax2+bx+c與y軸交于點B(0,2).
(1)求該拋物線的解析式;
(2)是否在x軸上存在點P使△PAB為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點P是x軸上任意一點,則當PA﹣PB最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,D作BA,BC的平行線交于點E,且DE交AC于點O,連接AE.
(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:
(2)先化簡,再求值:3a-2(a-ab)+(b-2ab),其中a,b滿足|2a+b|+(2-b) =0
(3)解方程: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在△ABC的邊AB上,且∠ACD=∠A.
(1)作∠BDC的平分線DE,交BC于點E.(要求:尺規(guī)作圖,保留作圖痕跡,但不必寫出作法);
(2)在(1)的條件下,求證:DE∥AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請在橫線上填寫合適的內容,完成下面的證明:
(1)如圖①如果AB∥CD,求證:∠APC=∠A+∠C.
證明:過P作PM∥AB,
所以∠A=∠APM,( )
因為PM∥AB,AB∥CD(已知)
所以PM∥CD( )
所以∠C= ( )
因為∠APC=∠APM+∠CPM
所以∠APC=∠A+∠C( )
(2)如圖②,AB∥CD,根據(jù)上面的推理方法,直接寫出∠A+∠P+∠Q+∠C= .
(3)如圖③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,則m= (用x、y、z表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB,AC的垂直平分線分別交BC于D,E兩點,垂足分別是M,N.
(1)若△ADE的周長是10,求BC的長;
(2)若∠BAC=100°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在今年法國網(wǎng)球公開賽中,我國選手李娜在決賽中成功擊敗對手奪冠,稱為獲得法國網(wǎng)球公開賽冠軍的亞洲第一人.某班體育委員就本班同學對該屆法國網(wǎng)球公開賽的了解程度進行全面調查統(tǒng)計,收集數(shù)據(jù)后繪制了兩幅不完整的統(tǒng)計圖,如圖(1)和圖(2).根據(jù)圖中的信息,解答下列問題:
(1)該班共有名學生;
(2)在圖(1)中,“很了解”所對應的圓心角的度數(shù)為;
(3)把圖(2)中的條形圖形補充完整.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com