2.已知拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)D(1,3),并經(jīng)過(guò)點(diǎn)A(X0,0),2≤X0≤6,其中a、b、c為常數(shù),
(1)求常數(shù)a的取值范圍;
(2)若等腰三角形△DEF的E、F在拋物線(xiàn)上,DE=DF,且△DEF的面積為-8a,且EF到x軸的距離等于2,求該拋物線(xiàn)的解析式;
(3)若a=-1,拋物線(xiàn)與y軸于C點(diǎn),B(2,0),P是線(xiàn)段OB上的動(dòng)點(diǎn),把射線(xiàn)CP逆時(shí)針旋轉(zhuǎn)45°成為射線(xiàn)CQ,在射線(xiàn)CQ、CP上是否存在點(diǎn)M、N使得BM+MN+NB最小?如果存在,當(dāng)使得BM+MN+NB最小時(shí),求由BM、MN、NB組成的三角形面積的最大值;如果不存在,說(shuō)明理由.

分析 (1)設(shè)拋物線(xiàn)為y=a(x-1)2+3,當(dāng)拋物線(xiàn)經(jīng)過(guò)A(2,0)或(6,0)時(shí)求出a的值即可確定a的范圍.
(2)根據(jù)條件可以知道F(1-8a,2)代入設(shè)拋物線(xiàn)為y=a(x-1)2+3即可求出a.
(3)作點(diǎn)B關(guān)于直線(xiàn)CQ的對(duì)稱(chēng)點(diǎn)B′,點(diǎn)B關(guān)于直線(xiàn)CP的對(duì)稱(chēng)點(diǎn)B″,連接B′B″分別交CQ、CP于點(diǎn)M、N,此時(shí)BM+MN+BN最小,通過(guò)證明這個(gè)最小值是定值為4,然后證明△BMN是直角三角形,題目轉(zhuǎn)化為求周長(zhǎng)為4的直角三角形的面積的最大值了,利用不等式的性質(zhì)可以解決.

解答 解:(1)∵拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)D(1,3),可以設(shè)拋物線(xiàn)為y=a(x-1)2+3,
當(dāng)經(jīng)過(guò)A(2,0)時(shí),得到a=-3,
當(dāng)經(jīng)過(guò)A(6,0)時(shí),得到a=-$\frac{3}{25}$,
∴-3≤a≤-$\frac{3}{25}$.
(2)∵△DEF的面積為-8a,且EF到x軸的距離等于2,
∴$\frac{1}{2}$•EF•1=-8a,
∴EF=-16a,
∴F(1-8a,2)代入拋物線(xiàn)為y=a(x-1)2+3,
∴2=64a3+3
a=-$\frac{1}{4}$,
∴拋物線(xiàn)為y=-$\frac{1}{4}$(x-1)2+3.
(3)存在.
如圖作點(diǎn)B關(guān)于直線(xiàn)CQ的對(duì)稱(chēng)點(diǎn)B′,點(diǎn)B關(guān)于直線(xiàn)CP的對(duì)稱(chēng)點(diǎn)B″,連接B′B″分別交CQ、CP于點(diǎn)M、N.
此時(shí)BM+MN+BN最小,
∵∠MCB=∠MCB′,∠NCB=∠NCB″,CB=CB′=CB″=2$\sqrt{2}$,NB=NB″,MB=MB′,
∴∠B′CB″=2∠MCN=2×45°=90°,B′B″=$\sqrt{2}$CB′=4,
∴BM+NB+MN的最小值=4.
∵∠B′=∠B″=45°,
∴∠CBM=∠CBN=45°,
∴∠MBN=90°,
∴MN2=BM2+BN2,MN+BM+BN=4,
設(shè)BM=a,BN=b,MN=c,
∵a+b+c=4,
∴a+b+$\sqrt{{a}^{2}+^{2}}$=4,
∵a+b≥2$\sqrt{ab}$,a2+b2≥2ab,
∴2$\sqrt{ab}$+$\sqrt{2ab}$≤4,
∴$\sqrt{ab}$≤2(2-$\sqrt{2}$)
∴ab≤24-16$\sqrt{2}$,
∴$\frac{1}{2}$ab≤12-8$\sqrt{2}$,
∴由BM、MN、NB組成的三角形面積的最大值為12-8$\sqrt{2}$.

點(diǎn)評(píng) 本題考查二次函數(shù)、對(duì)稱(chēng)的性質(zhì)、三角形的面積、最小值問(wèn)題、勾股定理等知識(shí),學(xué)會(huì)利用對(duì)稱(chēng)找到BM+MN+NB最小時(shí)的位置,利用不等式性質(zhì)確定周長(zhǎng)為定值的直角三角形面積的最大值,是這個(gè)題目的難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如圖,已知DE⊥DB于D,∠ADE=56°,DC是∠ADB的平分線(xiàn),則∠ADC=17°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.高安市出租車(chē)司機(jī)小李某天營(yíng)運(yùn)全是在東西走向的320國(guó)道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車(chē)?yán)锍蹋▎挝唬呵祝┤绫恚?br />
+15-3+14-11+10-12
(1)將最后一名乘客送達(dá)目的地時(shí),小李距下午出發(fā)地點(diǎn)的距離是多少千米?
(2)若汽車(chē)耗油量a升/千米,這天下午汽車(chē)耗油共多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知圓錐的底面積為9πcm2,其母線(xiàn)長(zhǎng)為4cm,則它的側(cè)面積等于12πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列計(jì)算中正確的是(  )
A.3a2+4a=7a3B.5a3-6a3=-aC.a2+3a2=4a2D.7a-3a=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,頂點(diǎn)為A的拋物線(xiàn)y=a(x+2)2-4交x軸于點(diǎn)B(1,0),連接AB,過(guò)原點(diǎn)O作射線(xiàn)OM∥AB,過(guò)點(diǎn)A作AD∥x軸交OM于點(diǎn)D,點(diǎn)C為拋物線(xiàn)與x軸的另一個(gè)交點(diǎn),連接CD.
(1)求拋物線(xiàn)的解析式、直線(xiàn)AB的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線(xiàn)段OD向點(diǎn)D運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿線(xiàn)段CO向點(diǎn)O運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).
問(wèn)題一:當(dāng)t為何值時(shí),△OPQ為等腰三角形?
問(wèn)題二:當(dāng)t為何值時(shí),四邊形CDPQ的面積最?并求此時(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.△ABO在平面直角坐標(biāo)系的位置如圖1所示,其中,點(diǎn)A(4,2)、B(3,0)、O(0,0).

(1)將△ABO繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得△A1B1O,在圖1中畫(huà)出旋轉(zhuǎn)后的圖形,其中點(diǎn)A1的坐標(biāo)是(-2,4);
(2)將△A1B1O向x軸正方向平移3個(gè)單位得△A2B2B,B2B與OA交于點(diǎn)M,在圖2中畫(huà)出圖形,并證明:MB平分∠A2BA;
(3)求△ABM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在平面直角坐標(biāo)系中,A(-1,3),B(-3,-2),C(3,-2),D(5,3),AB=CD,點(diǎn)E、F分別在AB、CD上,試判斷∠BEF和∠DFE的大小關(guān)系并說(shuō)明理由(提示:連接BD,先證明AB∥CD).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某數(shù)有兩個(gè)平方根分別是a+3與a-7,求這個(gè)數(shù)25.

查看答案和解析>>

同步練習(xí)冊(cè)答案