【題目】如圖,△ABC的三邊AB、BC、CA長分別為30、40、50.其三條角平分線交于點O,則S△ABO :S△BCO :S△CAO =______ 。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經過點A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達式;
(2)把直線OA向上平移后與反比例函數(shù)的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達式;
(3)在(2)的條件下,直線BC與y軸交于點D,求以點A,B,D為頂點的三角形的面積;
(4)在(3)的條件下,點A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點D為線段OB的中點,點C、P分別為線段AB、OA上的動點,當PC+PD值最小時點P的坐標為_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點作圓的切線.
已知:P為⊙O外一點.
求作:經過點P的⊙O的切線.
小敏的作法如下:如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點C.
(2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點.
(3)作直線PA,PB.
老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是 ;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是 .請寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在探究“尺規(guī)三等分角”這個數(shù)學名題中,利用了如圖,該圖中,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉得到線段AF,CF、BA的延長線交于點E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是( 。
A. 7° B. 21° C. 23° D. 34°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A(2,0),點B (0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com