(2013•涼山州)如圖,菱形ABCD中,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為( 。
分析:根據(jù)菱形得出AB=BC,得出等邊三角形ABC,求出AC,長,根據(jù)正方形的性質(zhì)得出AF=EF=EC=AC=4,求出即可.
解答:解:∵四邊形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC是等邊三角形,
∴AC=AB=4,
∴正方形ACEF的周長是AC+CE+EF+AF=4×4=16,
故選C.
點評:本題考查了菱形性質(zhì),正方形性質(zhì),等邊三角形的性質(zhì)和判定的應用,關鍵是求出AC的長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•涼山州)如圖,拋物線y=ax2-2ax+c(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•涼山州)如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(10,0),(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為
(2,4)或(3,4)或(8,4)
(2,4)或(3,4)或(8,4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•涼山州)-2是2的( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•涼山州)你認為下列各式正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•涼山州)如果單項式-xa+1y3
1
2
ybx2
是同類項,那么a、b的值分別為( 。

查看答案和解析>>

同步練習冊答案