如圖,四邊形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延長(zhǎng)線于F,DC=2AD,AB=BE.
(1)求證:AD=DE.
(2)求證:四邊形BCFD是菱形.
分析:(1)由AB=BE,BD=BD,利用“HL”可證△BDA≌△BDE,得出AD=DE;
(2)由AD=DE,DC=DE+EC=2AD,可得DE=EC,又AD∥BC,可證△DEF≌△CEB,得出四邊形BCFD為平行四邊形,再由BE⊥CD證明四邊形BCFD是菱形.
解答:證明:(1)∵AB=BE,BD=BD,∠A=∠DEB=90°,
∴△BDA≌△BDE,
∴AD=DE;

(2)∵AD=DE,DC=DE+EC=2AD,
∴DE=EC,
又AD∥BC,
∴△DEF≌△CEB,
∴DF=BC,
∴四邊形BCFD為平行四邊形,
又∵BE⊥CD,
∴四邊形BCFD是菱形.
點(diǎn)評(píng):本題考查了菱形的判定,全等三角形的判定與性質(zhì).關(guān)鍵是明確每個(gè)判定定理的條件,逐步推出特殊四邊形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案