【題目】如圖,直線過正方形的頂點,點、到直線的距離分別為、,則正方形的周長為_________.
【答案】
【解析】
根據(jù)正方形性質得出AD=AB,∠BAD=90°,求出∠EAB=∠FDA,證△AEB≌△DFA,求出DF=AE=4,在Rt△AED中,由勾股定理求出AD,即可求出正方形的面積.
解:∵四邊形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∵BE⊥EF,DF⊥EF,
∴∠AEB=∠DFA=90°,
∴∠FAD+∠BAE=180°-90°=90°,∠ABE+∠EAB=90°,
∴∠FAD=∠EBA,
∵在△AEB和△DAF中
∴△AEB≌△DAF(AAS),
∴DF=AE=4,
在Rt△AFD中,由勾股定理得:AD=
即正方形ABCD的面積是5×4=20.
故答案為:20.
科目:初中數(shù)學 來源: 題型:
【題目】一只不透明的袋子中,裝有三個分別標記為“1”、“2”、“3”的球,這三個球除了標記不同外,其余均相同.攪勻后,從中摸出一個球,記錄球上的標記后放回袋中并攪勻,再從中摸出一個球,再次記錄球上的標記.
(1)請列出上述實驗中所記錄球上標記的所有可能的結果;
(2)求兩次記錄球上標記均為“1”的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△C;平移△ABC,若A的對應點的坐標為(0,4),畫出平移后對應的△;
(2)若將△C繞某一點旋轉可以得到△,請直接寫出旋轉中心的坐標;
(3)在軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在 中 ,平分交 于 ,的兩邊分別與, 相交于,兩點,且.
(1)如圖,若, ,, ,.
①寫出 °,的長是 .
②求四邊形的周長.
(2)如圖,過作于,作于,先補全圖乙再證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學生小明將線段的垂直平分線上的點,稱作線段的“軸點”.其中,當時,稱為線段的“長軸點”;當時,稱為線段的“短軸點”.
(1)如圖1,點,的坐標分別為,,則在,,,中線段的“短軸點”是______.
(2)如圖2,點的坐標為,點在軸正半軸上,且.
①若為線段的“長軸點”,則點的橫坐標的取值范圍是( )
A. B. C. D.或
②點為軸上的動點,點,在線段的垂直平分線的同側.若為線段的“軸點”,當線段與的和最小時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市有三個景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對七(1)班學生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現(xiàn)根據(jù)調查結果繪制了如下不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合圖中信息解答下列問題:
(1)九(1)班現(xiàn)有學生__________人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數(shù)為__________;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校七年級有1000名學生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學生多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請連接AC,BD,求證:AC垂直平分BD;
(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動點,且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;
(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:等腰△DEC,∠DEC=90°,DE=EC=3,已知等腰△AEB,∠AEB=90°,AE=BE=2.
(l)求證:△DEB≌△CEA;
(2)判斷BD與AC的關系,并說明理由.
(3)若∠DAE=90°,請直接寫出BC的長,BC= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com