(2009•安溪縣質(zhì)檢)在一個不透明的口袋中裝著分別標(biāo)有數(shù)字1,2,3,4的四個乒乓球.
(1)從袋中隨機(jī)摸出一個乒乓球,請求出該球數(shù)字是偶數(shù)的概率;
(2)從袋中隨機(jī)摸出一個乒乓球,記下乒乓球的數(shù)字,再從袋中隨機(jī)摸出另一個乒乓球,記下乒乓球的數(shù)字.請用樹狀圖或列表法求出摸出兩球的數(shù)字均不小于3的概率.
【答案】分析:根據(jù)概率的求法,找準(zhǔn)兩點:
①全部情況的總數(shù);
②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.
解答:解:
(1)所求的概率是=.(3分)

(2)用樹狀圖法:

(5分)
由此可知,摸出兩球的數(shù)字的所有等可能結(jié)果共有12種,(6分)
其中兩球的數(shù)字均不小于3的有2種.(7分)
∴P(兩球的數(shù)字均不小于3)=.(8分)
注:用列表法求出參照給分.
點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)已知拋物線的頂點為A(0,1).
(1)求m的值;
(2)如圖1,已知點B(0,2),P是第一象限內(nèi)拋物線上的任意一點,過P作PQ⊥x軸,垂足為Q.
①求證:PB2=PQ2;(只對PQ>OB的情況進(jìn)行證明,對PQ≤OB同理可證)
②如圖2,已知點C(1,3),試探究在拋物線上是否存在點M,使得MB+MC取得最小值?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)某人要做一批地磚,每塊地磚(如圖1)是邊長為0.4米的正方形ABCD,點E、F分別在邊BC和CD上,若將此種地磚按圖2所示的形式鋪設(shè),能使中間的深色陰影部分成四邊形EFGH.
(1)直接判定四邊形EFGH的形狀;
(2)設(shè)CE=x米.
①用x的代數(shù)式表示四邊形AEFD的面積;
②若△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價格依次為120元、80元、40元.試問x取何值時,這批地磚的材料費最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若DE=4,AD=6,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•安溪縣質(zhì)檢)如圖,已知一次函數(shù)的圖象經(jīng)過點A(-1,0)、B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)設(shè)線段AB的垂直平分線交x軸于點C,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省泉州市安溪縣初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•安溪縣質(zhì)檢)下列說法正確的是( )
A.“明天降雨的概率是80%”表示明天有80%的時間降雨
B.“拋一枚硬幣正面朝上的概率是0.5”表示每拋硬幣10次有5次出現(xiàn)正面朝上
C.“彩票中獎的概率是1%”表示買100張彩票一定會中獎
D.不可能事件是確定事件

查看答案和解析>>

同步練習(xí)冊答案