已知關(guān)于x的方程x2-(2m-3)x+m-4=O的二根為a1、a2,且滿足-3<a1<-2,a2>0.求m的取值范圍.
y=x2-(2m-3)x+m-4,如圖得關(guān)系式,
當(dāng)x=0時(shí),y=m-4<0,
當(dāng)x=-2時(shí),y=4+4m-6+m-4<0,
當(dāng)x=-3時(shí),y=9+6m-9+m-4>0,
y=m-4<0
y=4+4m-6+m-4<0
y=9+6m-9+m-4>0

解得
4
7
<m<
6
5

故答案為:
4
7
<m<
6
5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

己知:如圖1,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(O,-4),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)P(t,O)是線段AB上一動(dòng)點(diǎn)(不與A、B重合),過P點(diǎn)作PEAC,交BC于E,連接CP,求△CPE的面積S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,若平行于x軸的動(dòng)直線r與該拋物線交于點(diǎn)Q,與直線AC交于F,點(diǎn)D的坐標(biāo)為(2,0).問是否存在這樣的直線r,使得△0DF為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2-2x-3與x軸相交于A、B兩點(diǎn),拋物線上有一點(diǎn)P,且△ABP的面積為6.
(1)求A與B的坐標(biāo);
(2)求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下表是滿足二次函數(shù)y=ax2+bx+c的五組數(shù)據(jù),x1是方程ax2+bx+c=0的一個(gè)解,則下列選項(xiàng)中正確的是( 。
x1.61.82.02.22.4
y-0.80-0.54-0.200.220.72
A.1.6<x1<1.8B.1.8<x1<2.0C.2.0<x1<2.2D.2.2<x1<2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+(6-
m2
)x+m-3與x軸有A、B兩個(gè)交點(diǎn),且A、B兩點(diǎn)關(guān)于y軸對(duì)稱.
(1)求m的值;
(2)寫出拋物線解析式及頂點(diǎn)坐標(biāo);
(3)根據(jù)二次函數(shù)與一元二次方程的關(guān)系,將此題的條件換一種說法寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2-8x+15的圖象與x軸相交于A、B兩點(diǎn),點(diǎn)C在該函數(shù)的圖象上移動(dòng),能使△ABC的面積等于1的點(diǎn)C共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

不論x為何值,函數(shù)y=ax2+bx+c(a≠0)的值恒大于0的條件是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=
1
2
(x-1)2-1與x軸的交點(diǎn)坐標(biāo)為______,這兩個(gè)交點(diǎn)間的距離是______;拋物線與y軸的交點(diǎn)坐標(biāo)為______,該交點(diǎn)到x軸的距離是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱軸為直線x=1,若其與x軸一交點(diǎn)為A(3,0),則由圖象可知,方程ax2+bx+c=0的另一個(gè)解是(  )
A.-2B.-1C.-1.5D.-2.5

查看答案和解析>>

同步練習(xí)冊(cè)答案