如圖,已知AB、CD相交于點O,AO=BO,CO=DO.

求證:△AOD≌△BOC.

答案:
解析:

  分析:根據(jù)已知條件可知,△AOD與△BOC有兩組對應(yīng)邊相等,觀察圖形可知,∠AOD與∠BOC是一組對頂角,所以∠AOD=∠BOC.這樣,可根據(jù)SAS證明兩個三角形全等.

  證明:在△AOD和△BOC中,

  因為

  所以△AOD≌△BOC.(SAS)

  點評:圖中∠AOD與∠BOC是對頂角,成為利用SAS證明兩個三角形全等的一個隱含條件.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB、CD是⊙O的兩條平行弦,過A點的⊙O的切線AE和DC的延長線交于E點,P為弧
CD
上一點,弦AP、BP與CD分別交于點M、N.
求證:CM:EM=NM:DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

32、如圖,已知AB、CD相交于點O,OB平分∠DOE,若∠DOB=30°,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,已知AB=BC=CD=AD,∠DAC=40°,那么∠B=
100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB,CD相交于點0,△ACO≌△BD0,CE∥DF,求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB、CD相交于點O,OE⊥AB,∠EOC=28°,則∠AOD=
62
62
度.

查看答案和解析>>

同步練習(xí)冊答案