(2010•鞍山)如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

【答案】分析:(1)容易知道△ANB∽△APM,利用相似三角形的對應邊成比例就可以求出PM;
(2)若PNB∽△PAD,則,而,∴這樣就可以求出t,也可以求出相似比;
(3)首先利用△AMP∽△ABN把QM,PM用t表示,然后就可以用t表示梯形PMBN與梯形PQDA的面積,根據(jù)已知可以得到關于t的方程,最后就可以根據(jù)t與a的關系式就可以討論t的取值范圍了;
(4)根據(jù)(3)已經(jīng)得到t的取值范圍,再根據(jù)梯形PQCN的面積與梯形PMBN的面積相等得到關于t的方程,求出t,再求出a,這樣就可以判斷a的值是否存在.
解答:解:(1)當t=1時,MB=1,NB=1,AM=4-1=3,
∵PM∥BN
∴△ANB∽△APM,



(2)當t=2時,使△PNB∽△PAD,

,
這樣就可以求出t,
相似比為2:3.

(3)∵PM⊥AB,CB⊥AB,∠AMP=∠ABC,△AMP∽△ABN,
,∵,
∵PQ=3-
當梯形PMBN與梯形PQDA的面積相等,
=,
化簡得,
∵t≤3,
,則a≤6,
∴3<a≤6.

(4)∵3<a≤6時,梯形PMBN與梯形PQDA的面積相等,
∴梯形PQCN的面積與梯形PMBN的面積相等即可,則CN=PM,
(a-t)=3-t,
兩邊同時乘以a,得at-t2=3a-at,
整理,得t2-2at+3a=0,
代入,整理得9a3-108a=0,
∵a≠0,∴9a2-108=0,
∴a=±2,
所以a=2
所以,存在a,
當a=2時梯形PMBN與梯形PQDA的面積、梯形PQCN的面積相等.
點評:此題綜合性比較強,考查了相似三角形的性質與判定,梯形的面積公式,列方程解方程等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2010•鞍山)如圖,矩形AOCB的兩邊OC、OA分別位x軸、y軸上,點B的坐標為B(,5),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖象上,那么該函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《反比例函數(shù)》(03)(解析版) 題型:選擇題

(2010•鞍山)如圖△OAP,△ABQ均是等腰直角三角形,點P,Q在函數(shù)y=(x>0)的圖象上,直角頂點A,B均在x軸上,則點B的坐標為( )

A.(,0)
B.(,0)
C.(3,0)
D.(,0)

查看答案和解析>>

科目:初中數(shù)學 來源:2010年天津市中考數(shù)學模擬試卷(二)(解析版) 題型:填空題

(2010•鞍山)如圖,矩形AOCB的兩邊OC、OA分別位x軸、y軸上,點B的坐標為B(,5),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數(shù)的圖象上,那么該函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年遼寧省鞍山市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•鞍山)如圖△OAP,△ABQ均是等腰直角三角形,點P,Q在函數(shù)y=(x>0)的圖象上,直角頂點A,B均在x軸上,則點B的坐標為( )

A.(,0)
B.(,0)
C.(3,0)
D.(,0)

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省樂山市中考數(shù)學試卷(課標卷)(解析版) 題型:選擇題

(2010•鞍山)如圖△OAP,△ABQ均是等腰直角三角形,點P,Q在函數(shù)y=(x>0)的圖象上,直角頂點A,B均在x軸上,則點B的坐標為( )

A.(,0)
B.(,0)
C.(3,0)
D.(,0)

查看答案和解析>>

同步練習冊答案