【題目】如圖,四邊形是正方形,點上,繞點順時針旋轉(zhuǎn)后能夠與重合,若,試求的長是__________

【答案】

【解析】

由正方形的性質(zhì)得出AB=AD=3,∠ABC=D=BAD=90°,由勾股定理求出AP,再由旋轉(zhuǎn)的性質(zhì)得出ADP≌△ABP′,得出AP′=AP=,∠BAP′=DAP,證出PAP′是等腰直角三角形,得出PP′=AP,即可得出結(jié)果.

解:∵四邊形ABCD是正方形,

AB=AD=3,DP=1,∠ABC=D=BAD=90°

AP=,

∵△ADP旋轉(zhuǎn)后能夠與ABP′重合,

∴△ADP≌△ABP′,

AP′=AP=,∠BAP′=DAP,

∴∠PAP′=BAD=90°,

∴△PAP′是等腰直角三角形,

PP′=AP=;

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,∠ACB的平分線交AB于點D,交O于點E,過點CO的切線CPBA的延長線于點P,連接AE

(1)求證:PCPD;

(2)若AC=6cm,BC=8cm,求線段AE、CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的面積為28,對角線交于點;以、為鄰邊作平行四邊形,對角線交于點;以、為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AOBC于點O,OEAB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F

(1)求證:ACO的切線;

(2)若點FOA的中點,OE=3,求圖中陰影部分的面積;

(3)在(2)的條件下,點PBC邊上的動點,當PE+PF取最小值時,直接寫出BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設(shè)運動時間為x秒,PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)求PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O,連接AF、CE.

(1)求證:△AOE≌△COF;

(2)求證:四邊形AFCE為菱形;

(3)求菱形AFCE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點坐標為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個根x1x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個根,則這四個根的和為﹣4.其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點、在函數(shù)是常數(shù))的圖像上,且點在點的左側(cè)過點軸,垂足為,過點軸,垂足為,的交點為,連結(jié)、.若的面積分別為14,則的值為( )

A.4B.C.D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).

(1)求km的值;

(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.

①當n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

同步練習冊答案