【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y= 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)D,過(guò)點(diǎn)B作BC的垂線,交對(duì)稱軸于點(diǎn)E.
(1)求證:點(diǎn)E與點(diǎn)D關(guān)于x軸對(duì)稱;
(2)點(diǎn)P為第四象限內(nèi)的拋物線上的一動(dòng)點(diǎn),當(dāng)△PAE的面積最大時(shí),在對(duì)稱軸上找一點(diǎn)M,在y軸上找一點(diǎn)N,使得OM+MN+NP最小,求此時(shí)點(diǎn)M的坐標(biāo)及OM+MN+NP的最小值;
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)D在射線AD上移動(dòng),點(diǎn)D平移后的對(duì)應(yīng)點(diǎn)為D′,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′,設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)F,將△FBC沿BC翻折,使點(diǎn)F落在點(diǎn)F′處,在平面內(nèi)找一點(diǎn)G,若以F′、G、D′、A′為頂點(diǎn)的四邊形為菱形,求平移的距離.
【答案】
(1)證明:如圖1中,令y=0,得到 x2﹣ x﹣3=0,解得x=﹣ 或3 ,
∴A(﹣ ,0),B(3 ,0),
令x=0,可得y=﹣3,
∴C(0,﹣3),
∵y= x2﹣ x﹣3= (x﹣ )2﹣4,
∴頂點(diǎn)D( ,﹣4),設(shè)對(duì)稱軸與x軸交于F,則BF=2 ,
∵△EFB∽△BOC,
∴ = ,
∴ = ,
∴EF=4,
∴E( ,4),
∴E、D關(guān)于x軸對(duì)稱.
(2)過(guò)點(diǎn)P作PQ∥y軸,交直線AE于點(diǎn)Q.
∵yAE= x+2,
∴設(shè)P(a, a2﹣ a﹣3),Q(a, a+2),(0<a<3 ),
∴PQ=( a+2)﹣( a2﹣ a﹣3)=﹣ a2+2 a+5,
∴S△PAE= PQ|xE﹣xA|= (﹣ a2+2 a+5)2 =﹣ a2+4a+5 ,
∴當(dāng)a=﹣ =2 時(shí),S△PAE最大,此時(shí)P(2 ,﹣3),
作點(diǎn)O關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)O′(2 ,0),作點(diǎn)P關(guān)于Y軸的對(duì)稱點(diǎn)P′(﹣2 ,﹣3),連接O′P′,分別交對(duì)稱軸、y軸于點(diǎn)M、N,此時(shí)M、N即為所求.
∴yP′O′= x﹣ ,當(dāng)x= 時(shí),y=﹣ ,
∴M( ,﹣ ),
∴OM+MN+NP的最小值O′P′= = .
(3)∵F′( ,﹣ ),A(﹣ + t,﹣2t),D( ,﹣4),
設(shè)平移距離為 t,則A′(﹣ + t,﹣2t),D′( + t,﹣4﹣2t),
A′F2=6t2﹣24t+ ,D′F′2=6t2+ ,A′D′2=24,
①當(dāng)A′F2=D′F′2時(shí),6t2﹣24t+ =6t2+ ,解得t=1.
②當(dāng)A′F′2=A′D′2時(shí),6t2﹣24t+ =24,解得t= .
③當(dāng)D′F′2=A′D′2時(shí),24=6t2+ ,解得t= 或﹣ (舍棄),
∴平移的距離 t= , , .
【解析】(1)首先求出A、B、C、D的坐標(biāo),再根據(jù)△EFB∽△BOC對(duì)應(yīng)邊成比例得出方程,推出EF的長(zhǎng)度,求出點(diǎn)E的坐標(biāo)即可解決問(wèn)題;
(2)過(guò)點(diǎn)P作PQ∥y軸,交直線AE于點(diǎn)Q.構(gòu)建 二次函數(shù),利用二次函數(shù)的性質(zhì)求出點(diǎn)P的坐標(biāo),作點(diǎn)O關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)O′,作點(diǎn)P關(guān)于Y軸的對(duì)稱點(diǎn)P′,連接O′P′,分別交對(duì)稱軸、y軸于點(diǎn)M、N,此時(shí)M、N即為所求;
(3)由題意得F,A,D三點(diǎn)的坐標(biāo),設(shè)平移距離為 t,則得出A′,D′的坐標(biāo),可得A′F2,,D′F′2,A′D′2的長(zhǎng)度,然后分三種情形①當(dāng)A′F2=D′F′2時(shí),②當(dāng)A′F′2=A′D′2時(shí),③當(dāng)D′F′2=A′D′2時(shí)列出方程即可解決問(wèn)題。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解作軸對(duì)稱圖形的相關(guān)知識(shí),掌握畫(huà)對(duì)稱軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱點(diǎn)③依次連線,以及對(duì)相似三角形的性質(zhì)的理解,了解對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在東西向的馬路上有一個(gè)巡崗?fù)?/span>A,巡崗員甲從崗?fù)?/span>A出發(fā)以13km/h速度勻速來(lái)回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
4 | -5 | 3 | -4 | -3 | 6 | -1 |
(1)求第六次結(jié)束時(shí)甲的位置(在崗?fù)?/span>A的東邊還是西邊?距離多遠(yuǎn)?)
(2)在第幾次結(jié)束時(shí)距崗?fù)?/span>A最遠(yuǎn)?距離A多遠(yuǎn)?
(3)巡邏過(guò)程中配置無(wú)線對(duì)講機(jī),并一直與留守在崗?fù)?/span>A的乙進(jìn)行通話,問(wèn)在甲巡邏過(guò)程中,甲與乙的保持通話時(shí)長(zhǎng)共多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽(tīng)寫(xiě)大賽,學(xué)校對(duì)兩位選手從表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫(xiě)四個(gè)方面做了測(cè)試,他們各自的成績(jī)(百分制)如表:
選手 | 表達(dá)能力 | 閱讀理解 | 綜合素質(zhì) | 漢字聽(tīng)寫(xiě) |
甲 | 85 | 78 | 85 | 73 |
乙 | 73 | 80 | 82 | 83 |
(1)由表中成績(jī)已算得甲的平均成績(jī)?yōu)?/span>80.25,請(qǐng)計(jì)算乙的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí);
(2)如果表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫(xiě)分別賦予它們2、1、3和4的權(quán),請(qǐng)分別計(jì)算兩名選手的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末小麗從家里出發(fā)騎單車去公園,因?yàn)樗遗c公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時(shí)間后繼續(xù)騎行,愉快地到了公園,圖中描述了小麗路上的情景,下列說(shuō)法中正確的是_______.
①小麗在便利店停留時(shí)間為15分鐘
②公園離小麗家的距離為2000米
③小麗從家到達(dá)公園共用時(shí)間20分鐘
④小麗從家到便利店的平均速度為100米/分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠ACB=90°點(diǎn)E是AB的中點(diǎn),連接CE,過(guò)點(diǎn)E作ED⊥BC于點(diǎn)D,在DE的延長(zhǎng)線上取一點(diǎn)F,使AF=CE,求證四邊形ACEF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,A、B兩點(diǎn)之間的距離是90米,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā)到終點(diǎn)C,乙機(jī)器人始終以50米分的速度行走,乙行走9分鐘到達(dá)C點(diǎn).設(shè)兩機(jī)器人出發(fā)時(shí)間為t(分鐘),當(dāng)t=3分鐘時(shí),甲追上乙.
請(qǐng)解答下面問(wèn)題:
(1)B、C兩點(diǎn)之間的距離是 米.
(2)求甲機(jī)器人前3分鐘的速度為多少米/分?
(3)若前4分鐘甲機(jī)器人的速度保持不變,在4≤t≤6分鐘時(shí),甲的速度變?yōu)榕c乙相同,求兩機(jī)器人前6分鐘內(nèi)出發(fā)多長(zhǎng)時(shí)間相距28米?
(4)若6分鐘后甲機(jī)器人的速度又恢復(fù)為原來(lái)出發(fā)時(shí)的速度,直接寫(xiě)出當(dāng)t>6時(shí),甲、乙兩機(jī)器人之間的距離S.(用含t的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的有( )
①不相交的兩條直線是平行線;
②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行;
③兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ);
④在同一平面內(nèi),若直線,則直線與平行.
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次學(xué)生夏令營(yíng)活動(dòng),有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類學(xué)生人數(shù)比例見(jiàn)扇形統(tǒng)計(jì)圖.
(1)參加這次夏令營(yíng)活動(dòng)的初中生共有多少人?
(2)活動(dòng)組織者號(hào)召參加這次夏令營(yíng)活動(dòng)的所有學(xué)生為貧困學(xué)生捐款.結(jié)果小學(xué)生每人
捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學(xué)生每人捐款 20 元.問(wèn)平均 每人捐款是多少元?
(3)在(2)的條件下,把每個(gè)學(xué)生的捐款數(shù)額(以元為單位)——記錄下來(lái),則在這組數(shù)據(jù)中,眾數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線交AC于點(diǎn)D,交AB于點(diǎn)E,CD=2,則AC等于( )
A. 4 B. 5 C. 6 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com