已知拋物線y=ax2+(
4
3
+3a)x+4與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.是否存在實(shí)數(shù)a,使得△ABC為直角三角形?若存在,請求出a的值;若不存在,請說明理由.
依題意,得點(diǎn)C的坐標(biāo)為(0,4),
設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,0),(x2,0),
由ax2+(
4
3
+3a)x+4=0,
解得x1=-3,x2=-
4
3a

∴點(diǎn)A、B的坐標(biāo)分別為(-3,0),(-
4
3a
,0),
∴AB=|-
4
3a
+3|,AC=
AO2+OC2
=5,BC=
CB2+OC2
=
|-
4
3a
|
2
+42
,
∴AB2=|-
4
3a
+3|2=
16
9a2
-
8
a
+9,
AC2=25,BC2=
16
9a2
+16.
(ⅰ)當(dāng)AB2=AC2+BC2時(shí),∠ACB=90°,
由AB2=AC2+BC2,
16
9a2
-
8
a
+9=25+
16
9a2
+16,
解得a=-
1
4
,
∴當(dāng)a=-
1
4
時(shí),點(diǎn)B的坐標(biāo)為(
16
3
,0),
AB2=
625
9
,AC2=25,BC2=
400
9
,
于是AB2=AC2+BC2,
∴當(dāng)a=-
1
4
時(shí),△ABC為直角三角形.
(ⅱ)當(dāng)AC2=AB2+BC2時(shí),∠ABC=90°,
由AC2=AB2+BC2,
得25=
16
9a2
-
8
a
+9+
16
9a2
+16,
解得a=
4
9

當(dāng)a=
4
9
時(shí),-
4
3a
=-
4
4
9
=-3,點(diǎn)B(-3,0)與點(diǎn)A重合,不合題意.
<ⅲ>當(dāng)BC2=AC2+AB2時(shí),∠BAC=90°,
由BC2=AC2+AB2
得25+
16
9a2
-
8
a
+9=
16
9a2
+16,
解得a=
4
9

不合題意.
綜合<。、<ⅱ>、<ⅲ>,當(dāng)a=-
1
4
時(shí),△ABC為直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx-c經(jīng)過直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)A,B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)點(diǎn)P為拋物線上的一個(gè)動點(diǎn),求使S△APC:S△ACD=5:4的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一次函數(shù)圖象與x軸y軸交于A(6,0)B(0,2
3
)線段AB的垂直平分線交x軸于點(diǎn)C交y軸于點(diǎn)D
求:(1)求這個(gè)一次函數(shù)的解析式;
(2)過A,B,C三點(diǎn)的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).設(shè)拋物線的頂點(diǎn)為D,求解下列問題:
(1)求拋物線的解析式和D點(diǎn)的坐標(biāo);
(2)過點(diǎn)D作DFy軸,交直線BC于點(diǎn)F,求線段DF的長,并求△BCD的面積;
(3)能否在拋物線上找到一點(diǎn)Q,使△BDQ為直角三角形?若能找到,試寫出Q點(diǎn)的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是一條高速公路的隧道口在平面直角坐標(biāo)系上的示意圖,點(diǎn)A和A1、點(diǎn)B和B1分別關(guān)于y軸對稱,隧道拱部分BCB1為一條拋物線,最高點(diǎn)C離路面AA1的距離為8米,點(diǎn)B離路面為6米,隧道的寬度AA1為16米;則隧道拱拋物線BCB1的函數(shù)解析式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用甲、乙兩種原料配制成一種飲料,已知兩種原料中的維生素C和維生素E及購買這兩種原料的價(jià)格如下表:
甲種原料乙種原料
維生素C含量(單位/千克)600100
維生素E含量(單位/千克)300500
原料價(jià)格(元/千克)155
(1)現(xiàn)配制這種飲料10千克,要求至少含有4200單位維生素C和330單位維生素E,設(shè)需要甲種原料x千克)(x是整數(shù)),則如何配制既符合要求又成本最低,此時(shí)每千克的最低成本是多少?
(2)按照(1)中最低成本配制的飲料售價(jià)定為每瓶8元(0.5千克每瓶),每天可售出80瓶,若售價(jià)每上漲0.5元,則每天可少售出10瓶,問定價(jià)多少元時(shí),每天的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖中是拋物線形拱橋,當(dāng)水面在n時(shí),拱頂離水面2m,水面寬4m,水面下降1m,水面寬度增加多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A在點(diǎn)(-2,0)和(-1,0)之間(包括這兩點(diǎn)),頂點(diǎn)C是矩形DEFG上(包括邊界和內(nèi)部)的一個(gè)動點(diǎn),則abc______0(填“>”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某大眾汽車經(jīng)銷商在銷售某款汽車時(shí),以高出進(jìn)價(jià)20%標(biāo)價(jià).已知按標(biāo)價(jià)的九折銷售這款汽車9輛與將標(biāo)價(jià)直降0.2萬元銷售4輛獲利相同.
(1)求該款汽車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少萬元?
(2)若該款汽車的進(jìn)價(jià)不變,按(1)中所求的標(biāo)價(jià)出售,該店平均每月可售出這款汽車20輛;若每輛汽車每降價(jià)0.1萬元,則每月可多售出2輛.求該款汽車降價(jià)多少萬元出售每月獲利最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案