三個(gè)正方形的面積如下圖,正方形A的面積為


  1. A.
    6
  2. B.
    36
  3. C.
    64
  4. D.
    8
B
分析:根據(jù)直角三角形的勾股定理,得:兩條直角邊的平方等于斜邊的平方.再根據(jù)正方形的面積公式,知:以兩條直角邊為邊長(zhǎng)的正方形的面積和等于以斜邊為邊長(zhǎng)的正方形的面積.
解答:A的面積等于100-64=36;
故選B.
點(diǎn)評(píng):本題主要考查勾股定理的證明:以兩條直角邊為邊長(zhǎng)的正方形的面積和等于以斜邊為邊長(zhǎng)的正方形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、為了美化環(huán)境,需在一塊正方形空地上分別種植不同的花草,現(xiàn)將這塊空地按下列要求分成四塊:①分割后的整個(gè)圖形必須是軸對(duì)稱圖形;②四塊地的形狀相同;③四塊地的面積相等.現(xiàn)甲、乙、丙三人給出如下分割方案.

甲:作兩條對(duì)角線(如圖(1)所示);
乙:過(guò)一邊的四等分點(diǎn)分別作對(duì)邊的垂線段,結(jié)果為如圖(2)所示中的兩種圖形;
丙:目前尚未想出分割方法,但認(rèn)為甲、乙二人的方法都對(duì),而乙給出的方法只能算同一種方法.如果你是丙,按照上述三個(gè)要求,你能在下圖所示的三個(gè)正方形中給出另外三種不同的分割方法嗎?(只畫(huà)圖,不寫(xiě)作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作:小明準(zhǔn)備制作棱長(zhǎng)為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計(jì):
精英家教網(wǎng)精英家教網(wǎng)
說(shuō)明:
方案一:圖形中的圓過(guò)點(diǎn)A、B、C;
方案二:直角三角形的兩直角邊與展開(kāi)圖左下角的正方形邊重合,斜邊經(jīng)過(guò)兩個(gè)正方形的頂點(diǎn)
紙片利用率=
紙片被利用的面積紙片的總面積
×100%
發(fā)現(xiàn):
(1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個(gè)端點(diǎn).你認(rèn)為小明的這個(gè)發(fā)現(xiàn)是否正確,請(qǐng)說(shuō)明理由.
(2)小明通過(guò)計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請(qǐng)幫忙計(jì)算方案二的利用率,并寫(xiě)出求解過(guò)程.
探究:
(3)小明感覺(jué)上面兩個(gè)方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請(qǐng)直接寫(xiě)出方案三的利用率.
說(shuō)明:方案三中的每條邊均過(guò)其中兩個(gè)正方形的頂點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某課題學(xué)習(xí)小組在一次活動(dòng)中對(duì)三角形的內(nèi)接正方形的有關(guān)問(wèn)題進(jìn)行了探討:
定義:如果一個(gè)正方形的四個(gè)頂點(diǎn)都在一個(gè)三角形的邊上,那么我們就把這個(gè)正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過(guò)程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在
 
個(gè)、
 
個(gè)、
 
個(gè)大小不同的內(nèi)接正方形.
乙同學(xué):在直角三角形中,兩個(gè)頂點(diǎn)都在斜邊上的內(nèi)接正方形的面積較大.
丙同學(xué):在不等邊銳角三角形中,兩個(gè)頂點(diǎn)都在較大邊上的內(nèi)接正方形的面積反而較。
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請(qǐng)舉出一個(gè)反例并通過(guò)計(jì)算給予說(shuō)明,若正確,請(qǐng)給出證明;
(3)請(qǐng)你結(jié)合(2)的判定,推測(cè)丙同學(xué)的結(jié)論是否正確,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某課題學(xué)習(xí)小組在一次活動(dòng)中對(duì)三角形的內(nèi)接正方形的有關(guān)問(wèn)題進(jìn)行了探討:
定義:如果一個(gè)正方形的四個(gè)頂點(diǎn)都在一個(gè)三角形的邊上,那么我們就把這個(gè)正方形叫做三角形的內(nèi)接正方形.
結(jié)論:在探討過(guò)程中,有三位同學(xué)得出如下結(jié)果:
甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在
1
1
個(gè)、
2
2
個(gè)、
3
3
個(gè)大小不同的內(nèi)接正方形.
乙同學(xué):在直角三角形中,兩個(gè)頂點(diǎn)都在斜邊上的內(nèi)接正方形的面積較大.
任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
(2)乙同學(xué)的結(jié)果正確嗎?若不正確,請(qǐng)舉出一個(gè)反例并通過(guò)計(jì)算給予說(shuō)明,若正確,請(qǐng)給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省沭陽(yáng)縣廣宇學(xué)校九年級(jí)第一次月考考試數(shù)學(xué)卷 題型:解答題

某數(shù)學(xué)研究所門(mén)前有一個(gè)邊長(zhǎng)為4米的正方形花壇,花壇內(nèi)部要用紅、黃、紫三種顏色的花草種植成如圖所示的圖案,圖案中.準(zhǔn)備在形如Rt的四個(gè)全等三角形內(nèi)種植紅色花草,在形如Rt△EMH的四個(gè)全等三角形內(nèi)種植黃色花草,在正方形內(nèi)種植紫色花草,每種花草的價(jià)格如下表:

品種
紅色花草
黃色花草
紫色花草
價(jià)格(元/米2
60
80
120
設(shè)的長(zhǎng)為米,正方形的面積為平方米,買(mǎi)花草所需的費(fèi)用為元,解答下列問(wèn)題:
(1)之間的函數(shù)關(guān)系式為                
(2)求之間的函數(shù)關(guān)系式,并求所需的最低費(fèi)用是多少元;
(3)當(dāng)買(mǎi)花草所需的費(fèi)用最低時(shí),求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案