精英家教網 > 初中數學 > 題目詳情

【題目】鎮(zhèn)綠色和特色農產品在市場上頗具競爭力.外貿商胡經理按市場價格10元/千克在我區(qū)收購了6000千克蘑菇存放入冷庫中.請根據胡經理提供的預測信息(如幫胡經理解決以下問題:

1若胡經理想將這批蘑菇存放x天后一次性出售, 則x天后這批蘑菇的銷售單價為 元, 這批蘑菇的銷售量是 千克;

2胡經理將這批蘑菇存放多少天后,一次性出售所得的銷售總金額為100000元;銷售總金額=銷售單價×銷售量

3將這批蘑菇存放多少天后一次性出售可獲得最大利潤?最大利潤是多少?

【答案】1)(10+0.1x;6000-10x)(2100;3存放110天后出售這批香菇可獲得最大利潤16500元.

【解析

試題分析:1根據等量關系蘑菇的市場價格每天每千克上漲0.1元則可求出則x天后這批蘑菇的銷售單價,再根據平均每天有10千克的蘑菇損壞則可求出這批蘑菇的銷售量;

2按照等量關系利潤=銷售總金額-收購成本-各種費用列出方程求解即可;

3根據等量關系利潤=銷售總金額-收購成本-各種費用列出函數關系式并求最大值.

試題解析:1因為蘑菇的市場價格每天每千克上漲0.1元,所以x天后這批蘑菇的銷售單價為10+0.1x元;

因為均每天有10千克的蘑菇損壞,所以x天后這批蘑菇的銷售量是6000-10x千克;

2由題意得:10+0.1x)(6000-10x=100000,

整理得:x2-500x+40000=0,

解方程得:x1=100,x2=400不合題意,舍去

所以胡經理將這批蘑菇存放100天后,一次性出售所得的銷售總金額為100000元;

3設利潤為w,由題意得

w=10+0.1x)(6000-10x-240x-6000×10,

=-x2+260x=-x-1302+16900,

a=-1<0,

拋物線開口方向向下,

x=110時,w最大=16500,

存放110天后出售這批香菇可獲得最大利潤16500元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知m2﹣mn=2,mn﹣n2=5,則3m2+2mn﹣5n2=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:201902_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知長方體的長為AC=2cm,寬BC=1cm,高AA′=4cm.一只螞蟻如果沿長方體的表面從A點爬到B′點,那么沿哪條路最近?最短路程是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若一個三角形的三邊長分別為3 m,4 m5 m,那么這個三角形的面積為___.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某軍事行動中,對軍隊部署的方位,采用鐘代碼的方式來表示、例如,北偏東30°方向45千米的位置,與鐘面相結合,以鐘面圓心為基準,時針指向北偏東30°的時刻是100,那么這個地點就用代碼010045來表示、按這種表示方式,南偏東40°方向78千米的位置,可用代碼表示為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知代數式x﹣2y的值是﹣4,則代數式3﹣x+2y的值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】12分)如圖所示,在平面直角坐標系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點AC分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,且18a+c=0

1)求拋物線的解析式.

2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.

移動開始后第t秒時,設PBQ的面積為S,試寫出St之間的函數關系式,并寫出t的取值范圍.

S取得最大值時,在拋物線上是否存在點R,使得以P、BQ、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某科技小組制作了一個機器人,它能根據指令要求進行行進和旋轉,某一指令規(guī)定:機器人先向前方行走2 m,然后左轉60°,若機器人反復執(zhí)行這一指令,則從出發(fā)到第一次回到原處,機器人共走了多少米?

查看答案和解析>>

同步練習冊答案